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Abstract. Gene Regulatory Networks (GRNs) inference from gene expression data (GED) is a hard task and a
widely addressed scientific challenge. The sequencing of single-cell RNA (scRNA-seq) allows for the transcrip-
tome exploration at the cellular level and it is attractive for the GRNs inference. GRNs can be represented as
Boolean values, in which genes activation and inhibition are presented by logic relationships. Cartesian Genetic
Programming (CGP) can be used to evolve GRNs from gene expressions in a binary data form. Therefore, an
appropriate discretization technique is important due to its effects on the quality of models. Here, we analyze the
performance of ten unsupervised methods for GED discretization when applied to CGP for inferring GRNs. We
considered the following discretization methods, based on: statistics, data distribution, ranking, clustering (e.g., k-
means and Bikmeans), time series (Transitional State Discrimination), and a method developed by Gallo et al. for
data discretization. We also perform a sensibility study of the parameter required by ranking-based methods. We
provide a qualitative and quantitative analysis of the discretization approaches in order to obtain a set of methods
and parameters that are good for modeling GRNs from scRNA-seq data using CGP.
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1 Introduction

Systems Biology is an interdisciplinary research area that focuses on the interaction between the components
of a biological system [1]. Understanding the behavior of organisms at the molecular level depends on under-
standing what/where/when genes are expressed. Furthermore, gene expression is a complex process regulated at
different levels in protein synthesis [2]. All cellular activities are controlled by their genes through a complex net-
work that forms proteins from DNA. Gene expression depends on the relationships between genes in this network,
called the Gene Regulation Network (GRN). In the GRNs representation, genes are the network nodes and regula-
tory regulations are the network edges. Figure 1a shows a GRN with four genes where a direct arrow indicates the
activation of the regulatory relationship between two given genes; otherwise, it indicates its inhibition.

(a) Gene Regulatory
Network with four
genes (G1-G4).

(b) Individual with two primary inputs (I0 and I1) and
one output (O0). Continuous lines defines the phenotype,
nc = nr = 3 and Γ = {AND, OR, NOT, XOR}.

Figure 1. Illustrating a GRN (a) and an individual in CGP (b).

For the inference of GRNs, several data technologies can be used, for instance, RNA-Seq and scRNA-Seq.
Bulk RNA-seq technologies have been widely used to study gene expression patterns at population level in the
past decade. The advent of single-cell RNA sequencing (scRNA-seq) provides opportunities for exploring gene
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expression profiles at the single-cell level. Currently, scRNA-seq has become a favorable choice for studying the
key biological questions of cell heterogeneity and the development of early embryos (only include a small number
of cells), since bulk RNA-seq mainly reflects the averaged gene expression across thousands of cells [3].

GRNs can be modeled as continuous models in the form of differential equations, or as discrete models,
such as Boolean networks. The Boolean-based GRNs considered here model the regulatory relationships in the
form of logic functions. This model requires discretized data, and a common scheme for representing the genes’
interactions is an alphabet of two symbols Γ = {0,1}, where 0 is inhibition and 1 is activation. Boolean models
provide a qualitative measure of gene regulatory mechanisms [4] that, despite its simplicity, can represent through
its dynamics, several biologically significant phenomena. The discretization method impacts the quality of the
solutions and several techniques have been developed for this purpose, such as those in [5]. However, there is no
gold-standard discretization approach. Also, evolutionary computation techniques have been used to model GRNs.
Particularly, CGP obtained promising results in the literature [6].

Here, we evaluate 10 unsupervised methods for the discretization of GED when using CGP to infer GRNs
discrete models. Among them, ranking-based methods require a user-defined parameter and we also perform a
study of the parameter sensibility. The performance is assessed considering three curated models with a proper
evaluation framework presented in [7]. The results show that EFD and Median are good choices.

2 Problem Definition

We are interested here in inferring the network topology from a given GED [8]. When considering the GED
in the form of time series, the gene expression represents the measurements in each time point. A gene expression
dataset is a S x N matrix, where each row vector s (s = 1, ..., S) represents an N-dimensional transcriptome, and
each column vector y (y = 1, ..., N) corresponds to an S-dimensional gene profile in the total cell population [9],
where N and S stand for the total number of genes and time-points, respectively. The goal of the network inference
method is to use this data matrix to predict a set of regulatory interactions between any two genes from the total of
N genes. The final output is in the form of a graph with N nodes and a set of edges [9].

Boolean Networks use Boolean Algebra to discover the relationship between genes. Moreover, Boolean
networks assume each gene g at a time point t is in one of two states, active or inactive, according to its GED
at time t [10]. Therefore, one needs to binarize the data, leading to information loss. In general, the data is
discretized in 1 (activation) or 0 (inhibition). Boolean-based models simplify the structure and dynamics of gene
regulation. Inferred networks provide a qualitative measure of gene regulatory mechanisms [4]. Also, it is possible
to obtain several practical uses, such as the identification of drugs for cancer treatment through the inference of the
relationships between genes from experimental data such as gene expression profiles [2].

There are several techniques for measuring the expression of a gene. For instance, single-cell RNA-Sequencing
(scRNA-seq) is attractive for GRN inference due to its production of thousands of independent measurements [11]
and there are methods that sort cells along “trajectories” describing the development or progress of the cell [12, 13],
called pseudotime, which is a measure of how far a cell has moved through biological progress. However, some
factors affect the reliability and veracity of the information that can be obtained with scRNA-seq data [14], which
can be either biologically-driven, genes not expressing RNA at the time of measurement, or technically-driven,
genes expressing RNA, but not at a sufficient level to be detected by sequencing technology [15].

In particular, unlike RNA-seq, the majority of reported expression levels in scRNA-seq are zeros. A matrix
of gene expression with many zeros is an issue due to the difficulty of distinguishing and modeling properly the
sources of zeros observed, being one of the main challenges for computational analysis [16]. This is known as
dropout, which occurs when a gene is observed at a low or moderate expression level in one cell but is not detected
in another cell of the same type. In addition, errors may be introduced due to biological variation, such as the
stochastic nature of gene expression, environmental niche, and effects created by the cell-cycle [14].

3 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a Genetic Programming technique in which programs are Directed
Acyclic Graphs (DAGs) encoded by a matrix of processing nodes, with nc columns and nr rows. [17]. The genes
are integer values and, for each gene, there are inputs and operation/functions that the node performs. Given a node
in the matrix, the nodes at its left side can be used as inputs. There is a user-defined parameter lb (levels-back) that
limits the number of columns at the left side where inputs can be selected to constrain the connectivity of the graph.
Also, the genotype contains nodes that contribute directly to the output, called active nodes, and those that do not,
the inactive nodes. The phenotype is composed only of the active nodes and the genotype-phenotype mapping is
done by recursively determining the nodes that contribute to each output, starting on the output and ending on the
primary inputs. The function set is user-defined and problem-dependent. For example, logic functions or gates are
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used when designing digital circuits. Figure 1b presents a CGP individual with two primary inputs and one output.
The functions are logical ones. Grey nodes are active and white nodes, inactive.

The most common search technique used in CGP is the (1 + λ) Evolutionary Strategy (ES) [17], where λ
is the number of new solutions generated at each iteration. In this case, the best individual, the one with more
matches concerning its truth-table, between the parent and the λ new solutions is selected for the next generation.

CGP normally uses only mutation to generate new individuals [17]. Here, we consider the use of Single
Active Mutation (SAM) [18] which reduces the wasted objective function evaluations, where (i) one node and one
of its elements (inputs or function) are selected at random, and (ii) its value is changed to another valid value. Steps
(i) and (ii) are repeated until an active node is modified. The general CGP’s procedure is shown in Algorithm 1.

Algorithm 1 CGP’s (1 + λ)-ES general procedure [17].

1: Randomly generate the individual population and select the fittest individual as parent
2: while the maximum number of evaluations allowed is not reached do
3: Generate λ new individuals (by mutating the parent individual) and evaluate them
4: Select as parent the best individual among the (1 + λ) current individuals
5: end while

4 Discretization Methods

For our proposal, we consider the data from three curated models provided in [7]. Curated models were gen-
erated considering four published Boolean models: mammalian cortical area development (mCAD) [19], ventral
spinal cord (VSC) development [20], and hematopoietic stem cell (HSC) differentiation [21]. These datasets were
simulated using BoolODE [7] in order to obtain data in the form of scRNA-seq. BoolODE was also used to create
ten different datasets with 2,000 cells for each model. For each dataset, three versions of dropout are available with
q ∈ {0%, 50%, 70%}. For each dropout category, 10 datasets were generated. Then, for each curated problem, 30
datasets are available. Pseudotimes were computed using Slingshot [22].

We considered two scenarios. In the first, we try to infer the GRN considering the original data. In the second,
the data is initially ordered according to the pseudotime information of the cells. Thus, we have a distribution of
gene expression points over time. To remove or soften the effects of technical and biological variations and to
obtain a function that represents gene expression over time, we use data approximation using cubic smoothing
splines implemented in Python and distributed through the library csaps1. The smoothing value was evaluated in
[0, 0.99] with a step of 0.05. Low smoothing values can cause underfitting while high ones lead to overfitting.

There are several approaches for discretizing GED, and here we evaluate 10 unsupervised methods for the
discretization of GED. For further reading, we refer to [5].

Considering a gene expression matrix A’, where the rows are the genes and the columns are the time points,
the simplest method is to discretize the GED considering two levels of discretization with aij = 1, when a′ij ≥ δ,
and 0, otherwise, where aij is the discretized value and a′ij is the real gene expression value. The value δ can be
defined as the mean or the median of the A’ row. Also, one can consider δ as some sort of expression considering
a fixed proportion X regarding the maximum value of the A’ row (known as Max -X%Max).

Furthermore, one can perform discretization based on ranking. Assuming that the expression values are
sorted in decreasing order on a list L, the simplest approach is to assign the first X% values of L to 1, whereas
the other values are assigned to 0. This approach is known as Top%X [23, 24]. Also, one can use ‘Equal Width
Discretization’ (EWD) in which the difference between the maximum and the minimum values of A’ row is divided
into k intervals of equal width. Another related approach is based on the equal frequency principle. This method,
known as ‘Equal Frequency Discretization’ (EFD) [25], considers a given number k of symbols into which the
expression values will be discretized. Then L is split into k segments of length |L|/k containing the same number
of data points per symbol, thus assigning the k discrete states according to the decreasing order of the segments.

Other approaches that deal with the discretization of GED are based on clustering. The way to achieve this
is to consider each value a′ij of the GED A’ as an element of a single-dimensional space Ω. Then, a clustering
algorithm is applied to the S elements of X that correspond to a specific ‘data scope’ (a gene profile, a column
profile, or a matrix profile) to obtain groups of values, where the values belonging to the same group are as-
signed to the same discrete state. The groups are calculated by maximizing the similarity within the elements
of each cluster, while minimizing this value among elements in different clusters. A common quality metric for
the clusters is the WCSS (Within-Cluster Sum of Squares), defined as WCSS(D) =

∑
a′
ij
∈[p0,p1]

|a′ij − µ0|2 +∑k−1
r=1

∑
a′
ij
∈(pr,pr+1]

|a′ij − µr|2, where µr is the mean of the a′ij ∈ (pr, pr−1]. Basically, the WCSS is the sum

1https://csaps.readthedocs.io/en/latest/index.html
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of the squared Euclidean distance between the elements within a cluster and the mean of that cluster, where lower
values mean higher similarities between the elements of the clusters.

A widely used algorithm for this task is the k-means clustering [26]. The k-means uses the Squared Euclidean
distance as a similarity measure, trying to yield a partition of elements with the least WCSS, as before. The main
steps of the algorithm can be summarized as follows: (i) the algorithm takes a set of points S and a fixed integer
k as input, (ii) splits S into k subsets by choosing a set of k initial centroid points, where the elements of S are
grouped regarding their nearest centroid to form the clusters, and (iii) recalculate the centroids from the elements
within the clusters. Steps (ii) and (iii) are iterated until some stopping criterion is met (usually convergence). The
choice of the initial centroids is a key aspect, as it influences the final structure of the partition. Commonly, it is
started with random centroids and a different clustering of S may be obtained every time this method is run [27].

When dealing with GED, the most common approach is to use the k-means algorithm to discretize either
the gene expression profiles or the condition expression profiles [28, 29], such as Bidirectional K-means (Bik-
means) [28]. Bikmeans uses both the clustering of gene profiles (expression level) and column profiles (time infor-
mation of experimental condition) using the k-means algorithm [30]. That is, for a given “level of discretization”
of k, the algorithm identifies (k + 1) clusters for the gene profiles and the condition profiles, independently [5].

Considering an N ×M expression data matrix E, where N represents the expression values and M the time
points, Bikmeans uses K-means [30] clustering, which divides E(n,:), so that adjacent expression values of gene n
are divided into the same interval. Also, Bikmeans uses Cokmeans (K-means for columns) where the matrix E(:,m)
is divided into k intervals so that adjacent expression values at time point m are divided into same interval [28].
Finally, Bikmeans computes (k + 1)-means clusters for the expression values and time points, independently,
giving every expression value two possible discrete states, a′ij : one for the expression value (aeij), and one for the
time point, atij , with 1 ≤ aeij ≤ k + 1, 1 ≤ atij ≤ k + 1. Then, the discrete state aij , with 1 ≤ aij ≤ k is assigned
to a′ij if (aij)

2 ≤ agijacij < (aij +1)2. Considering k = 3, Table 1 shows an example of possible discrete states for
aij . In this case, k-means is performed N +M times as both expression values and time points are clustered [5].

When using GED in the form of variation between time points, the simplest approach is called Transitional
State Discrimination (TSD) [31]. TSD standardizes the values using z-scores with a normal distribution [5] as
aij = 1, a′ij − a′i(j−1) ≥ 0, and 0, a′ij − a′i(j−1) < 0, where aij is the discretized value and a′ij is the real data
values. The values a′ij generated by this transformation are then used to calculate the discrete state aij . According
to this discretization, aij equals 1 (active) when the observed values increase, and 0 (inactive), otherwise.

Finally, we consider a discretization approach developed by [32], where the discretization of a gene i can
be defined as minS1,S2⊂S (var(S1) + var(S2)), where S is the set of sample values for the gene i, S1 ∩ S2 = ∅,
S1∪S2 = S, |S1| > 1 and |S2| > 1, var(S1) and var(S2) are the variance of S1 and S2 respectively, and S1 and S2

represent the two expression states for the gene i. The samples of the gene i are divided into the two sets that have
the minimum sum of their variances. The cardinality of S1 and S2 is required to be greater than one in order to
avoid the effects of a possible outlier in the samples. Thus, when the samples of a gene i are separated in a partition
that violates this restriction, gene i is no longer considered in the inference process for the current datasets.

Table 1. Discretization via Bikmeans.

K-means

1 2 3 4

Cokmeans

1 1×1 = 1→ aij = 1 aij = 1 aij = 1 aij = 2

2 2×1 = 2→ aij = 1 aij = 2 aij = 2 aij = 3

3 3×1 = 3→ aij = 1 aij = 2 aij = 3 aij = 3

4 4×1 = 4→ aij = 2 aij = 3 aij = 3 aij = 3

Table 2. Problems used in the experiments.

Problem #Genes #Pseudotimes

HSC 11 4

mCAD 5 2

VSC 8 5

5 Computational Experiments

Experiments were conducted to analyze the performance of different discretization approaches when applied
to CGP as inference algorithm using benchmark scRNA-Seq time-series data. The results are obtained using the
BEELINE framework evaluation [7], which considers the area under the precision-recall curve (AUPRC) and the
area under the receiver operating characteristic curve (AUROC) values as metrics.

An excellent model has AUC, both for ROC and PRC, close to 1, which means it has a good separability.
For many real-world datasets, particularly medical datasets, the fraction of positive cases is often less than 0.5,
meaning that AUPRC has a lower baseline value than AUROC [33].

Also, we use performance profiles (PPs) [34] to analyze the relative performance of the methods. In PPs,
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the probability that the performance of a given method is within a factor τ > 1 of the best one is ρs(τ), and one
can extract: (i) the approach that obtained the best results for most problems (largest ρ(1)), (ii) the most reliable
approach (smaller τ such that ρ(τ) = 1), and (iii) the best overall performance (largest area under the PPs curves).

The problems are presented in Table 2. All discretizations were performed using Gene Expression Data
Pre-Processing Tool (GEDPROTOOLS)2 and our implementations are available3.

As each pseudotime gives information about one possible cell trajectory, for each pseudotime one GRN is
inferred. Then, the final GRN is given by merging the partial GRNs discovered for each pseudotime. Duplicated
regulatory relationships are removed. Only stronger regulatory relationships are kept in this case. The final GRN
is evaluated and the regulatory relationships are ranked from the stronger to the weaker. For all experiments we
consider nc = lb = 100, nr = 1 and the maximum number of evaluations of the objective function is 50,000.

Preliminary experiments were carried out considering different parameters for the Top%X and Max -X%Max
methods. For the first, values in [25, 60] with a step of 5% were considered. For Max -X%Max, the reference value
is 54% [23] and, thus, we analyzed {50, 54, 60}. In addition, experiments using data with and without spline were
performed. In general, data with spline provided better results of CGP. Thus, the remaining analysis considers the
results obtained with spline and with the best parameters obtained for Top (50%) and Max (50%). The analyses to
obtain these conclusions are available in the supplementary material.

Figure 2 presents the results for AUPRC and AUROC for HSC, mCAD, and VSC. The boxplots presented
in Figure 2a and 2b show that Bikmeans performed better for HSC. Also, even with 70% dropout, CGP with Bik-
means performed well. However, for mCAD and VSC, EFD showed better results in most cases. All discretization
approaches showed great variance, independently of the dropout rate. For all problems, using Mean as discretiza-
tion method, the results obtained with 50% and 70% dropout are the same. In general, dropouts did not affect
substantially the performance of CGP, different from related in the literature. This may occur because the dropouts
are considered don’t care situations, facilitating CGP in obtaining feasible solutions.

Figures 2g and 2h show PPs for AUPRC and AUROC, respectively. For AUPRC, one concludes that (i) Me-
dian found the best results for most problems (largest ρ(1)), (ii) KmeansRow is the most reliable approach (smaller
τ such that ρ(τ) = 1), and (iii) EFD obtained the best overall performance (largest area under the performance
profiles curves). For AUROC, one concludes that (i) Median and EFD are approaches that found the best results
for most problems, (ii) Median is the most reliable approach, and (iii) EFD obtained the best overall performance.

Thus, one can conclude that EFD obtained the best overall performance in both AUPRC and AUROC. How-
ever, Median is a good choice and obtained the second-best overall performance.

6 Concluding Remarks and Future Works

We evaluated here 10 unsupervised methods for the discretization of gene expression data when applied to
CGP to infer GRNs discrete models. Among them, ranking-based methods require a user-defined parameter and
we performed a study of the sensibility of these parameters, where we concluded that Top%X and Max -X%Max
performed better with 50%. Also, we evaluated the effect of using spline to smooth the data and the results show
that CGP is able to find more feasible solutions and the results for AUPRC and AUROC are better when using
spline. Bikmeans performed better for the problem HSC. For mCAD and VSC, EFD obtained better results.
However, all discretization methods showed high variance. In general, PPs showed that EFD provided the best
overall performance concerning both AUPRC and AUROC. As future work, we intend to extend this analysis to
real human and mice datasets and assess the performance of CGP using EFD in our previous works.
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Figure 2. Results obtained for all scenarios (a-f) and PPs considering AUPRC (g) and AUROC (h).
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