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Abstract. In most structural optimization problems, the minimization of the structure’s weight is a traditional
objective. Furthermore, it is expected to improve other aspects of the optimum design, leading to conflicting
objective functions. This paper analyses single and multi-objective structural optimization problems of a six-story
space steel frame, considering the structure’s weight minimization as the first objective function and the second one
concerning the maximum horizontal displacement at the top of the frame to be minimized. The design variables are
the profiles assigned to the beams and the profiles assigned to the columns in which their orientations, concerning
the principal axes, are also design variables. Pareto fronts with the non-dominated solutions are presented. A
Multi-Tournament Decision method is adopted to extract solutions from the obtained Pareto fronts based on the
decision maker’s preferences. The search algorithm adopted is the Third Step Differential Evolution (GDE3)
coupled with an Adaptive Penalty Method (APM) to handle the constraints.
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1 Introduction

In a structural optimization problem, it is usually desired to minimize the structure weight. Furthermore, it
may also be intended to improve some mechanical aspects, such as minimizing horizontal displacements. That
leads to conflicting objective functions. Therefore, this kind of problem requests a multi-objective optimization
formulation. In contrast to the single-objective problem, where the evolutionary process provides one best solution,
the result is a set of non-dominated solutions called Pareto front in the multi-objective problem. From this set, a
decision-maker extracts one or more solutions according to his/her preferences.

In many problems concerning the optimum design of steel frames, the commercial profiles assigned to the
members in the structure are design variables. Another interesting variable to be analyzed is the orientation of the
members’ cross-section. Beams are usually oriented in such a way that their strong axes resist the stresses due
to gravitational loads. On the other hand, columns’ best orientations depend on the lateral loads distribution and
structure shape. Regardless of the nature of the structural optimization problem, or the adopted design variables,
in most cases, the problem must satisfy constraints concerning structural and aesthetic aspects.

There is considerable literature on single and multi-objective optimization of steel frames. In 1992, Chan
[1] applied the optimality criteria algorithm for tall steel building design using standard sections and satisfying
inter-story drift constraints. A design procedure employing a Teaching–Learning Based Optimization (TLBO)

CILAMCE-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Optimal orientation of cross-sections of columns of 3D steel frames in a single and multi-objective optimization

technique was presented in Toğan [2]. The study obtained the minimum weight of planar steel frames subjected
to strength and displacement requirements imposed by the American Institute for Steel Construction (AISC). A
comparison of different meta-heuristics in multi-objective optimization of steel frames, with displacement and
weight minimization as conflicting objectives, is conducted by Gholizadeh and Baghchevan [3]. Recently, Resende
et al. [4] analyzed multi-objective problems considering the structure weight minimization, first natural frequency
maximization, critical load factor maximization, and maximum horizontal displacement minimization.

Structural optimization problems concerning column orientation have also been explored in prior studies.
In 2010, Kızılkan [5] investigated the effect of the appropriate choice of columns orientations on the minimum
weight of steel frames. In Lemonge and Barbosa [6] a space frame is optimized considering multiple cardinality
constraints and design variables corresponding to the orientation of cross-section of the profiles searched for the
columns.

This paper is organized as follows: Section 2 describes the formulation of the single and multi-objective
optimization problems discussed in this paper, Section 3 exposes considerations about reinforced concrete slabs in
the structure, Section 4 presents the basic concepts of the Differential Evolution, the constraint handling technique,
and briefly describes the Multi-criteria decision-making used to extract the solutions from the Pareto sets, Section
5 presents the numerical experiments and their results are analyzed in Section 6. Finally, the conclusions and future
works are presented in Section 7.

2 Single and multi-objective structural problems

The structural optimization problems presented in this paper refers to find x = {x1, x2, ..., xN}, a set of N
design variables of the steel frame. The single-objective structural problem is written as shown in Equation (1),
where of(x) is the objective function to be minimized. The multi-objective structural problem is written as shown
in Equation (2), where of1(x) and of2(x) are the conflicting objective functions to be minimized.

min of(x)

s.t. structural constraints (1)

min of1(x) and min of2(x)

s.t. structural constraints (2)

The structure weight, which is an objective function in the computational experiments presented in this paper,
is written as shown in Equation (3), where ρi, Li and Ai are the specific mass, the length and the cross-sectional
area of the i-th element of the structure, respectively, and N is the number of elements.

W (x) =

N∑
i=1

ρiAiLi (3)

Two experiments are analyzed in this paper. In the first one, the only objective is to minimize the structure
weight (W (x)). In the second one, minimizing the maximum horizontal displacement (δmax(x)) is also an objec-
tive, as shown in Equation (4). The displacements can be found using [K]{u} = {p}, the equilibrium equation for
a discrete system of bars, where [K] is the stiffness matrix, {u} are the nodal displacements and {p} are the load
components (Bathe [7]). The lower and upper bounds in the search space are denoted by xL and xU , respectively.

Single-objective: min W (x)

Multi-objective: min W (x) and min δmax(x)

s.t. structural constraints

xL ≤ x ≤ xU

(4)

The constraints of the problems are the maximum inter-story drift, the first natural frequency of vibration, the
critical load factor concerning the global stability, the LRFD interaction equations for combined axial force and
bending moments, the LRDF shearing equation, and geometric constraints referring to column-column connection.
In the single-objective problem, the maximum horizontal displacement is also a constraint.
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According to Brazilian ABNT [8] and American ANSI [9] codes, the structure must present a maximum
horizontal displacement (δmax(x)) and a maximum inter-story drift (dmax(x)) that are lower than the maximum
allowable values (δ̄ and d̄). These values depend on the building height (H) and on the height between two
consecutive stories (h) and are given by δ̄ = H/400 and d̄ = h/500. These constraints are described in Equations
5 and 6.

δmax(x)

δ̄
− 1 ≤ 0 (5)

dmax(x)

d̄
− 1 ≤ 0 (6)

The structure must present the first natural frequency (f1(x)) higher than a minimum allowable (f̄1) as de-
scribed in Equation (7). The natural frequencies of vibration are determined by solving an eigenproblem concern-
ing the mass matrix ([M ]) and the stiffness matrix ([K]) of the structure (Bathe [7]).

1− f1(x)

f̄1
≤ 0 (7)

To guarantee the structure’s global stability, the critical load factor (λcrt(x)) must be higher than one, as
defined in Equation (8). The load factors are determined by solving an eigenproblem concerning the stiffness
matrix ([K]) and the geometric stiffness matrix ([KG]) of the structure. The critical load factor (λcrt) is the lowest
eigenvalue computed (McGuire et al. [10]).

1− λcrt(x)

1
≤ 0 (8)

All members of the structure must also satisfy the LRDF interaction equation for combined axial and bending
(Equation (9)) and the LRDF shearing equation (Equation (10)). In the equations, the subscripts r and c refer,
respectively, to the required and allowable axial strength (P ), flexural strength about the major axis and the minor
axis (Mx and My) and shearing strength (V ). The methodology of determining the allowable strengths are similar
in both ABNT [8] and ANSI [9] and adopted in this paper.

Pr

Pc
+

8

9

(
Mrx

Mcx
+
Mry

Mcy

)
− 1 ≤ 0 if

Pr

Pc
≥ 0.2

Pr

2Pc
+

(
Mrx

Mcx
+
Mry

Mcy

)
− 1 ≤ 0 if

Pr

Pc
< 0.2

(9)

Vr
Vc
− 1 ≤ 0 (10)

The geometric constraints refer to the column-column connection, in order to establish that the upper column
must not have, neither the profile depth nor the mass, higher than the lower column. Equations (11) and (12) show
the geometric constraints, where dpi(x) and dpi−1(x) are the depth of the W section selected for the group of
columns i and i − 1, respectively. msi(x) and msi−1(x) are the unit weight of W section selected for the group
of columns i and i− 1, respectively. NGc is the number of groups of columns.

dpi(x)

dpi−1(x)
− 1 ≤ 0 i = 1, NGc (11)

msi(x)

msi−1(x)
− 1 ≤ 0 i = 1, NGc (12)

3 Effects of reinforced concrete slabs in the structure

Reinforced concrete slabs were considered in the whole area of the six stories of the frame. This consideration
leads to some significant structural effects. The stiffness of a slab incorporated into the space frame generates a
rigid diaphragm effect. It means that the slab element absorbs part of the solicitant efforts and contributes to the
stability of the structure and the increasing of the natural frequencies of vibration. In addition to that, the horizontal
displacements in a story can be considered the same for all nodes in that story. On the other hand, considering the
slabs in the structure mass has the negative effect of decreasing the natural frequencies of vibration.
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In the problems analyzed in this paper, the consideration of the slabs was made in a simplified way, by
increasing the beams’ lateral inertia in the stiffness matrix ([K]) and increasing the beams’ weight in the mass
matrix ([M ]). It is important to point out that the weight of the slabs is not considered in the objective function
W (x) described in Equation 3.

4 The GDE3, constraint-handling technique, and Multi-criteria decision making

The search algorithm adopted is the Third Step Differential Evolution (GDE3), proposed by Kukkonen and
Lampinen [11] as an extension of the Differential Evolution (DE) proposed by Storn and Price [12]. The GDE3
starts by generating a random population and improves it using DE’s selection, mutation, and crossover operations.
The GDE3 parameters are the crossover rate (Cr ∈ [0, 1]), the scale factor (F ∈ R) and the population size (N ).

Let PG be a population of Np decision vectors xi,G in generation G, where i ∈ {1, 2, 3, . . . , Np} is a vector
index. Each xi,G of the population in generation G is a n-dimensional vector and xj,i,G is its j-th component
(j ∈ {1, 2, 3, . . . , n}). Applying mutation and crossover operations (Storn and Price [12]), each decision vector
xi,G creates a corresponding trial vector ui,G. After that, the trial vector ui,G is compared to the decision vector
xi,G using the constraint domination concept. A vector x dominates a vector y (denoted by x �c y) if one, and
only one, of the following conditions is true (i): both are unfeasible and x � y in the constraint function violation
space; (ii) x is feasible and y is unfeasible, or (iii) x and y are feasible and x � y in the objective function space.
If ui,G �c xi,G, the trial vector ui,G is selected to replace the decision vector xi,G in the next generation PG+1

(population in generationG+1). If xi,G �c ui,G, ui,G is discarded and xi,G remains in the population. Otherwise,
both are included in PG+1. A complete and detailed description of the entire GDE3 algorithm can be found in
Vargas et al. [13].

The Adaptive Penalty Method (APM) proposed by Barbosa and Lemonge [14] is adopted in this paper to
handle the constraints. The APM adapts the value of the penalty coefficients of each constraint by using information
collected from the population, such as the mean objective function and the level of violation of each restriction.
With these information, the method automatically sets a higher penalty coefficient on those constraints that seem
to be more difficult to satisfy.

After obtaining the Pareto fronts of non-dominated-solutions, a Multi Tournament Decision Method (MTD)
method was adopted to extract the solutions. Weights of importance (wi) for each objective function are established
by the Decision Maker and, according to them, the MTD ranks the best and the worst possible solutions in the
Pareto frontier. The complete description of the MTD and a pseudo-code for this method can be found in Parreiras
and Vasconcelos [15].

5 Numerical Experiments

The structural optimization problems analyzed in this paper concern the six-story spatial steel frame with 258
members and 126 joints illustrated in Figure 1. The bays in both x and y directions have a regular spacing of 3m
and each story is 3m height.

Figure 1. Six-story spatial steel
frame

Figure 2. Member grouping for
columns in plan level

Figure 3. Member grouping for
beams in plan level
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The sizing design variables are to be chosen from a subset of commercial W-shape sections. The columns
and beams are linked as detailed in Figures 2 and 3, respectively. The groups change for every three stories
resulting in twelve sizing design variables. The column orientation of a group remains the same for all six stories,
which leads to four additional design variables. That results in a total of sixteen design variables, denoted by
x = {C1, ..., C8, B1, ..., B4, O1, ..., O4}, where Ci and Bi are integer indexes that designate the commercial steel
profiles for each group of columns and beams, respectively, and Oi is an index that indicates the orientation of a
group of columns. If Oi equals 0, the web of the columns of the i-th group are oriented in the x direction ( I) and
if Oi equals 1, the web of the columns of the i-th group are oriented in the y direction (I).

The gravity loads that act on the structure are 10 kN/m in the outer beams (B1 grouping) and 20 kN/m in the
inner beams (B2 grouping). The horizontal loads in the top of the columns are detailed in Figures 4 and 5. The
concrete slabs have a thickness of 10 cm and a specific weight of 25 kN/m3. The maximum allowable displacement
is δ = 45mm, the maximum allowable inter-story drift is d = 6mm and the minimum allowable frequency of
vibration is f1 = 1Hz.

Figure 4. Horizontal loads on the stories 1 to 5 Figure 5. Horizontal loads on the story 6

Ten independent runs with 100 generations and a population of 50 candidate vectors are set for the two
problems. The DE parameters adopted are the crossover ratio Cr = 0.9, the mutation probability M = 0.1 and the
scale factor F = 0.4. In the multi-objective problem, three solutions are extracted by the Multi-criteria Tournament
Decision: (i) scenario 1: w1 = 0.75 and w2 = 0.25; (ii) scenario 2: w1 = w2 = 0.5; (iii) scenario 3: w1 = 0.25 and
w2 = 0.75. Where w1 and w2 are the importance weights for the two conflicting objective functions: minimization
of the structure’s weight and minimization of the maximum horizontal displacement, respectively.

The columns orientations of the solution of the single-objective problem are represented in Figure 6. The
Pareto front of non-dominated solutions obtained for the multi-objective problem, as well as the columns orien-
tations of the extracted solutions, are illustrated in Figure 7. Finally, the results found for the single and multi-
objective problems are presented in Table 1, where LRFDmax and Vmax are the highest values found for the
LRDF interaction and shearing equations, respectively.

Figure 6. Layout of the best solution in the
single-objective problem
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Figure 7. Pareto front for the multi-objective optimiza-
tion problem with layout of the extracted solutions
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Table 1. Best results found for the single and multi-objective problems presenting the profiles assigned to each
member group, the columns’ cross-sections orientation and constraints and objective function values.

Single-objective Multi-objective

Scenario 1 2 3

Group Stories W Profiles and orientations (for columns)

C1
1-3 310x117

I

310x117

I

310x117

I

310x117

I

4-6 310x79 310x97 310x107 310x117

C2
1-3 310x93

I

310x117
I

310x117
I

310x117

I

4-6 150x22.5 310x79 310x97 310x110

C3
1-3 310x107

I
310x97

I

310x125

I

310x117
I

4-6 310x79 310x79 310x107 310x79

C4
1-3 310x97

I
310x117

I
310x117

I
310x117

I
4-6 310x97 310x107 310x117 310x117

B1
1-3 530x66 530x66 530x82 610x101

4-6 410x46.1 530x66 530x66 530x72

B2
1-3 310x21 410x38.8 410x38.8 530x66

4-6 460x60 460x89 250x32.7 250x25.3

Constraints and objective functions values

LRFDmax(x) 0.9323 0.8141 0.7790 0.7298

Vmax(x) 0.1918 0.1288 0.1285 0.1108

dmax(x)(mm) 6.0 5.0 4.6 4.2

f1(x)(Hz) 2.0945 2.2731 2.3423 2.3797

λcrt(x) 45.1694 52.0633 54.5901 57.3947

δmax(x)(mm) 28.9 21.4 19.5 17.7

W (x)(kg) 51071 61656 67100 74053

6 Analysis of results

Table 1 presents the results found for both single and multi-objective problems. As far as the structure weight
is concerned, one can observe that the lightest structure, as expected, was obtained in the single-objective problem
(W (x) = 51071 kg). In scenario 1 of the multi-objective problem the structure weight isW (x) = 61656 kg, value
that is 21% higher than in the single-objective problem. As the importance weight w1 decreases and w2 increases,
the value of W (x) also increases (W (x) = 74053 kg in scenario 3, 20% higher than in scenario 1).

With regard to the horizontal displacements, one can observe that in single-objective problem, the maximum
inter-story drift (dmax(x)) obtained was equal to the maximum allowed (d = 6.0mm), thus being an active con-
straint. The highest horizontal displacement was also obtained in this case (δmax(x) = 28.9 mm). In scenario 1
of the multi-objective problem the maximum horizontal displacement is δmax(x) = 21.4 mm, value that is 26%
lower than in the single-objective problem. As the importance weight w1 decreases and w2 increases, the value of
δmax(x) decreases (δmax(x) = 17.7 mm in scenario 3, 17% lower than in scenario 1).

Another interesting point is that, for the four solutions described in Table 1, as the weight increases, the values
of LRFDmax(x), Vmax(x) and dmax(x) decrease and the values of λcrt(x) and f1(x) increase. This is intuitive
since higher weights are related to more rigid structures, which present a better mechanical behaviour. As far as
column orientation is concerned, one can observe that the orientations obtained for the columns in groups C1 and
C4 remained the same for the four extracted solutions. Moreover, the column orientations for scenarios 1 and 2 of
the multi-objective problem were identical. That leads to the conclusion that these are significant variables.
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7 Conclusions

This paper analyzed single and multi-objective structural optimization problems of a six-story space steel
frame, considering the structure weight minimization as the first objective function and the second one concerning
the maximum horizontal displacement at the top of the frame to be minimized. The design variables are the profiles
assigned to the beams and the profiles assigned to the columns in which their orientations, concerning the principal
axes, are also design variables. In the multi-objective problem, three different scenarios were considered with
different importance weights for the objective functions. In the first scenario, the structure weight was given an
importance of 25%, in the second 50%, and the third 75%.

The results obtained from the single and multi-objective numerical experiments analyzed in this paper pre-
sented coherent aspects, as expected. The results concerning column orientation showed that this is a significant
variable. For future work, it is intended to make comparisons with other evolutionary algorithms. Furthermore,
it is expected to extend the analyses to large-scale problems, considering different objective functions and other
design variables.

Acknowledgements. The authors thank the Postgraduate Program in Civil Engineering (UFJF, PUC-RJ and
UFRJ), Brazilian Agencies CNPq (grant 306186/2017-9), FAPEMIG (Grant TEC PPM-00174-18), and CAPES
for the financial support.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] C. M. Chan. An optimality criteria algorithm for tall steel building design using commercial standard sections.
Structural optimization, vol. 5, n. 1, pp. 26–29, 1992.
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