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Abstract. Multi-objective structural optimization problems (MOSOPs) with two or more objectives are extensively
considered in the literature. Due to the great interest in solving these types of problems, several Multi-objective
Evolutionary Optimization Algorithms (MOEAs) have been developed. They are applied to problems in several
fields, mainly engineering. This paper compares multi-objective optimization algorithms based on swarm intel-
ligence and applies them to solve structural optimization problems concerning three objectives. The objective
functions are the weight, the natural frequencies of vibration, and the maximum nodal displacement, considering
stress constraints. The design variables, discrete or continuous, are the cross-sectional areas of the bars. Some
traditional benchmark problems in the literature in structural engineering applications were performed. Finally,
Pareto sets are presented where a Multi Tournament Decision (MTD) method is adopted to extract the desired
solutions from these problems.

Keywords: Multi-objective truss optimization, Particle Swarm Optimization, Structural optimization.

1 Introduction

It is common for designers to search for light and economic structures that meet safety criteria in structural
engineering. The objective function is usually single in most of these optimization problems. However, this
formulation may contain more objectives (multi-objective) and several constraints, which leads to constraints such
as maximum displacements and stresses and minimum values for natural frequencies of vibration, among others.

Evolutionary Algorithms (EAs), especially population-based meta-heuristics, have grown in recent decades
and successfully applied in the field of structural optimization. This kind of technique can be considered robust
and free of derivatives of objective functions and constraints. Researchers have developed many meta-heuristics.
The Particle Swarm Optimization (PSO) algorithm [1] is a widespread example of EA and provides computational
models based on the concept of collective intelligence.

In this paper, multi-objective structural optimization problems are solved concerning the minimization of the
mass of truss structures, the maximization of the first natural frequency of vibration, and the minimization of the
maximum displacement, concerning discrete or continuous design variables. The axial stresses are the constraints.
The computational experiment is on benchmark single-objective structural optimization problems widely discussed
in the literature: the 10-bar truss. Four multi-objective PSO algorithms are used to solve the MOSOPs. Pareto
fronts are used to show non-dominated solutions to optimization problems, and Multi-criteria decision-making
(MCDM) is adopted to extract solutions from the Pareto front according to the decision maker’s (DM) preferences.

The remainder of the paper is organized as follows. Section [2] describes the formulation of the MOSOPs.
Section [3] presents the algorithms adopted in this paper. Performance indicators to evaluate the algorithms are
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described in Section[d] The computational experiments and some discussions are presented in Section[5] Finally,
the paper ends with conclusions in Section [6]

2 Multi-objective optimization

In engineering, most decision problems are Multi-objective Structural Optimization Problem (MOSOPs) [2].
A MOSOP has some objective functions that are to be minimized (or maximized) simultaneously. Although single-
objective structural optimization problems are commonly found in the literature, the formulation of optimization
problems involving multiple objectives appears naturally due to two or more conflicting objectives.

The MOSOP discussed in this paper is formulated as:

min W(x) and max wq(x) and min maximum(u,;(x)), j =1,..., Ngor,
subject to o,(x) <7 (1)

XLSXSXU,

where W (x) is the weight of the structure, w; (x) is the first natural frequency of vibration, u;(x) is the displace-
ment at the j-th node, ngo¢ is the number of degree of freedom, and ¢;(x) is the axial stress at the i-th bar. The
design variables are x = { A1, A, ..., Ax }, where A; are the sizing design variables indicating the cross-sectional
areas of the N bars (continuous or discrete) that must be in the lower x” and upper xV bounds. W (x) is written as:

N

W(x) =Y pAiLs, )

=1

where p is the specific mass of the material and L; is the length of the i-th bar of the structure. w; (x) is obtained
by the evaluation of the eigenvalues of the matrix

|2, (M) + K] =0, Q)

where [M] is the mass matrix and w,,, , are the equivalent eigenvalues with respect to the m  natural frequencies of
vibration of the structure [3]]. The nodal displacements {u} are obtained by the equilibrium equation for a discrete
system of bars, which is written as:

(K] {u;(x)} = {p}, )

where {p} are the load components.

3 Particle swarm algorithms

The particle swarm algorithms used to solve the MOSOPs formulated in this paper are the Multi-objective
Craziness based Particle Swarm Optimization (MOCRPSO) [4]], the Competitive Multi-Objective Particle Swarm
Optimizer (CMOPSO) [3]], a novel MOPSO algorithm with Multiple search strategies (MMOPSO) [6]], and a novel
MOPSO (NMPSO) [[7]].

MOCRPSO operates with a special code based on CRPSO [8]] and incorporates a crowding distance mecha-
nism, non-dominated solutions, and an external archive, together with a mutation operator based on the MOPSO-
CD [9]. The algorithm was adopted in Carvalho [4]] to solve benchmark and engineering problems. Its performance
was discussed and compared with GDE3 [10], GDE3-APM [11], and MOA and MOAS [12] and achieved competi-
tive results. The Adaptive Penalty Method (APM) [13]] is the constraint-handling technique coupled to MOCRPSO.
CMOPSO was recently proposed, and no additional storage is required to record the historical information in the
search process, such that it does not need any external archive. The algorithm is verified by comparing it with
six existing algorithms on 21 benchmark multi-objective optimization problems. The experimental results demon-
strate that the CMOPSO shows significantly better overall performance than the compared algorithms in terms of
both qualities of the solution set and convergence speed.

MMOPSO uses two search strategies to update the velocity of each particle, which is respectively benefi-
cial for the acceleration of convergence speed and the keeping of population diversity. In addition, all the non-
dominated solutions visited by the particles are preserved in an external archive, where an evolutionary search
strategy is further performed to exchange useful information among them. MMOPSO was compared with some
algorithms, and simulation results show that MMOPSO performs better on most test problems. The NMPSO algo-
rithm uses a balanceable fitness estimation method and a novel velocity update equation to compose it. DTLZ and
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WFG test suites with 4-10 objectives are used to assess its performance. They indicate that NMPSO has superior
performance over four current algorithms considering four competitive multi-objective evolutionary algorithms
when solving most of the test problems adopted.

4 Performance indicators of the particle swarm algorithms

To assess the quality of the algorithms, some performance indicators can be found in the literature, which usu-
ally considers two aspects: whether the obtained solutions are as close as possible to the Pareto front (convergence)
and whether there is a widely spread distribution of solutions on it (diversity). In this study, the Hypervolume (HV)
[14], and the Empirical Attainment Function (EAF) [15]] are adopted to evaluate the performance of the algorithms.
These were chosen due to their popularity and efficiency.

4.1 Hypervolume (HV)

HYV metric was proposed by [[14]. It did not require knowledge of the real Pareto front of the analyzed problem
and to evaluate both convergence and diversity simultaneously. As its name implies, it provides the hypervolume
of the space limited by the solutions of the non-dominated set (that belongs to a Pareto front) and a reference point.

The free code developed by [161]_] was used here to obtain the HV. For its evaluation, each objective function
of the obtained Pareto front was normalized in the interval [0, 1], and all the coordinates of the adopted reference
point were designated equal to 1.

4.2 Empirical attainment function (EAF)

The Empirical Attainment Function (EAF), proposed by [[15]], returns a probability distribution of the results
obtained by an algorithm concerning the values of the objective functions. It is a summary of the results of several
executions of an algorithm. The EAF Best shows where an algorithm produces the best solutions in the objective
space.

A computational code in C language provided in [17 was adopted to compute the EAF from non-dominated
sets. EAF Best was adopted for three objective vectors as all feasible non-dominated solutions were obtained in
all independent runs. [15] and [18]] provided a discussion on how to obtain the EAF curves.

5 Computational experiments

This section assesses the performance of the algorithms, and the computational experiment refers to a well-
known structural optimization problem, named a 10-bar truss for cases with continuous and discrete variables.
The first objective is to minimize the structure’s weight, the second is to maximize the first natural frequency of
vibration, and the third is to minimize the maximum displacement, considering axial stresses as constraints.

The initial population was randomly generated considering the maximum number of objective function evalu-
ations is 50000 (50 particles and 1000 generations). The number of independent runs is 20, and all of the presented
solutions are rigorously feasible considering all algorithms. The MOCRPSO was developed using C language. Its
parameters are: ¢; = co = 2.05, v°r*iness = (0.001, Pcr = 0.5, global neighborhood topology. The external
file limit ARQ = 500. For all remaining algorithms was used the PlatEMO [19] to performed the test problem.
PIatEMO is a MATLAB platform for MOEAs which includes more than 50 algorithms and more than 100 multi-
objective test problems, along with several widely used performance indicators. The structure was analyzed by the
Finite Element Method (FEM) [20]] during the evolutionary process.

5.1 The 10-bar truss

A well-known structural multi-objective optimization problem, named as 10-bar truss [21]], and depicted in
Fig.|1| has p = 0.1 Ib/in®, and E = 10* ksi. Vertical downward loads of 100 kips are applied at nodes 2 and 4,
and the stress in each bar is limited to + 25 ksi. A non-structural mass of 1000 Ib is attached to the free nodes.
For the discrete case, the values of the cross-sectional areas are chosen from the set (in?): {1.62, 1.80, 1.99, 2.13,
2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97,

Thttp://lopez-ibanez.eu/hypervolume.
2https://eden.dei.uc.pt/ cmfonsec/aft.html
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5.12,5.74, 7.22,7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00,

33.50}, resulting in 42 options. For the continuous case, the lower and upper bounds for the cross-sectional areas
are defined by [0.1; 40] (in?).
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Figure 1. 10-bar truss, taken from [13].

5.2 Results and discussions

The results obtained for the MOSOPs are presented in Figures @ and @ concerning the EAF .o obtained
by MOCRPSO, CMOPSO, MMOPSO, and NMPSO algorithms for continuous and discrete cases, respectively.

MMOPSO
NMPSO

’ ﬁ + MOCRPSO
&, +th + CMOPSO + MOCRPSO
i o + MMOPSO + CMOPSO
g ﬁ; B + NMPSO 4

B | z
= 53+ /
2 ~ /
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1 T //(12
b ) 2000 4000 ' /
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(a) Continuous case (b) Discrete case

Figure 2. EAF} ¢4 of the MOCRPSO, CMOPSO, MMOPSO, and NMPSO algorithms for the 10-bar truss.

The values of the normalized HV's are shown in Table [l CMOPSO algorithm obtained the highest value of
the HV for the continuous case. For the discrete case, MOCRPSO algorithm obtained the highest value. NMPSO
algorithm obtained low values for the HV for both cases.

Table 1. HV values obtained for all independent runs.

10-bar truss MOCRPSO CMOPSO MMOPSO NMPSO

Continuous  0.807732 0.849822  0.826196  0.673550
Discrete 0.752447 0.686654  0.688117  0.603232

The analysis takes into account all the information obtained by the Pareto fronts was performed. The DM
has a nontrivial task of extracting a solution from the Pareto set. Based on that, a tournament-based method that
ranks the best and the worst possible solutions in the Pareto set according to objectives and preferences (weights)
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established by the DM was proposed by Parreiras & Vasconcelos [22] and named as Multicriteria Tournament
Decision (MTD) method. More details and pseudocode for the MTD can be found in [22].

This method is used in this study to find the best solutions, according to some importance. Four decision
scenarios are used considering three criteria: (i) the weight, (ii) the first natural frequency, and (iii) the maximum
displacement. The scenarios are described as follows:

¢ Scenario A: all criteria have the same importance, i.e. (w, wa, w3) = (0.3333, 0.3333, 0.3333).

 Scenario B: criterion (ii) is the most important and criteria (i) and (iii) have the same importance, i.e. (w1,
wy, w3) = (0.2, 0.6, 0.2).

* Scenario C: criterion (i) is the most important and criteria (ii) and (iii) have the same importance, i.e. (w1,
wy, w3) = (0.6, 0.2, 0.2).

* Scenario D: criterion (iii) is the most important and criteria (i) and (ii) have the same importance, i.e. (w1,
wa, w3) = (0.2, 0.2, 0.6).

Figures [3a) and [da] show the non-dominated solutions for the 10-bar truss continuous and discrete cases,
respectively. The solid circles in these figures represents the solutions extracted by the MTD method corresponding
to each scenario. Also, Figures [3band [4D] present the same data as the previous figures, however, with a different
view to better expose the MTD solutions.

+ MOCRPSO

+ MOCRPSO + CMOPSO

& + CMOPSO + MMOPSC

+ :;{k __'_ MMOPSO + NMPSO
hs e tE, r;MFSQ i @ Scenario A
2 @ Scenario ® Scenario B
. | + [ ) Scenaric B @ ScenarioC
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u(in)
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Figure 3. MTD solutions of the MOCRPSO, CMOPSO, MMOPSO, and NMPSO algorithms for the 10-bar truss
(continuous case).
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Figure 4. MTD solutions of the MOCRPSO, CMOPSO, MMOPSO, and NMPSO algorithms for the 10-bar truss
(discrete case).

Table[2] provides the optimized design variables (dv) and their objective function values of the MTD extracted
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solutions from Figures [3] and [} discrete and continuous cases, respectively, considering the four scenarios. From
the complete extraction data, such as the values of the objective functions, the DM expands the range of solutions
that are of interest more easily. If any of these are not within the DM expectations, new scenarios can be tested, and
new solutions can be extracted. For instance, the DM may be interested in obtaining a solution that the importance
for the frequency is higher, so a possible scenario would be (w;, ws, ws) = (0.1, 0.8, 0.1). Besides, the DM also
may be interested that the weight and maximum displacement would be of high importance,, so (w1, we, w3) =
(0.45, 0.1, 0.45).

Table 2. Design variables (dv) and objective function values of the MTD solutions (Scenarios (Sc.) A, B, C, and
D) of the 10-bar truss. W (x) in Ib, wy (x) in Hz, and u(x) in inches.

Continuous case Discrete case
dv Sc. A Sc. B Sc. C Sc. D Sc. A Sc. B Sc. C Sc.D
Ay 40.0000 40.0000 33.0891 40.0000 13.5000 5.7400 13.5000 14.2000
As 0.1000 0.1000 0.1000 0.1000 2.6200 3.1300 1.6200 1.6200
As 40.0000 40.0000 19.6707 40.0000 5.7400 5.1200 5.7400 14.2000
Ay 22.3460 22.3460 16.5185 40.0000 4.9700 7.2200 4.5900 14.2000
As 0.1000 0.1000 0.10337 0.1000 1.9900 1.6200 1.6200 1.6200
As 0.1000 0.1000 0.1000 0.1000 1.6200 1.8000 1.6200 1.6200
Az 14.7962 14.7962 9.2151 18.1558 4.2200 4.4900 4.4900 4.8000
As 35.9561 35.9561 21.1957 40.0000 5.7400 7.2200 7.2200 14.2000
Ag 34.8341 34.8341 20.1569 40.0000 11.5000 13.9000 4.9700 14.2000
Ao 0.1000 0.1000 0.1000 0.1000 1.6200 3.1300 1.6200 1.6200
W(x) | 8057.7036 8057.7036 5084.5312 9333.1702 | 4653.0546 5365.0168 4206.1557 7973.8278
w1 (x) 5.1355 5.1355 5.1055 5.1406 11.5561 11.1228 11.6008 13.3188
u(x) 1.2803 1.2803 2.0177 1.1417 2.4658 2.4148 2.6713 1.4060

6 Conclusions

This study presented structural optimization problems considering three conflicting objectives and compared
four multi-objective algorithms based on swarm intelligence. The algorithms’ performance was evaluated using a
10-bar truss take into account continuous and discrete search spaces.

A set of non-dominated solutions was extracted from the experiments, and their respect HV's were presented.
The results indicated that MOCRPSO and CMOPSO algorithms achieved superior performance in the two analyzed
cases.

An analysis was conducted to evaluate the Pareto set using an MTD method to allow the DM to indicate his
preferences. Additionally, the values of the design variables and their objective functions obtained by the MTD
were presented, showing the best solutions according to some criteria.

Future works intend to apply the algorithm for solving other test problems considering large-scale optimiza-
tion problems.
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