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Abstract. This work aims to find a procedure to obtain an alternative formulation that represents the first mode of 

vibration of slender steel poles considering the effect of geometric non-linearity, using the Reyleigh-Ritz method, 

trigonometric formulations with optimization techniques and a finite element mathematical model of an existing 

polygonal steel pole. In order to consider the geometric non-linearity in the calculation of the natural frequencies 

of the respective structure, the concept of initial stiffness, geometric stiffness and effective stiffness computed by 

the Rayleigh method for vibration problems in mechanical systems was used. So, to optimize the time to obtain 

the modal response in the dynamic analysis of the described structure, without replacing the precision of the results 

of a rigorous analysis with sophisticated methodologies, alternative formulations to those described in NBR 6123 

(1988) will be presented in this work. 

Keywords: Dynamic Analysis, Vibration, Steel Poles, Geometric Non-Linearity, Vibration Mode, Rayleigh 
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1  Introduction 

Steel poles with hollow cross-section have been developed for the implementation of telecommunication 

systems in reduced spaces and are usually designed with a height of up to 60 meters, support loads of up to 30 

square meters of wind exposure area and have a better cost-benefit ratio when compared to other solutions on the 

market, they are manufactured with prismatic sections in a dodecagonal, octadecagonal or circular shape. Due to 

the area of exposure to the wind, this type of structure presents considerable dynamic behavior as indicated by 

Brasil and Silva (2015), to obtaining it’s dynamic response is highly important to characterize the vibrant behavior 

of the structure. The analysis of the problem discussed here aims to present the procedure to obtain an alternative 

formulation that represents the first vibration mode of slender steel pole with geometric nonlinearity effect. The 

objective is to carry out a study with the Reyleigh-Ritz method, trigonometric formulations with optimization 

technique and a finite element mathematical model of a polygonal steel pole. To consider the geometric 

nonlinearity in calculating the frequencies of the respective structure, the concept of initial stiffness, geometric 

stiffness and effective stiffness given by the Rayleigh method for vibration problems in mechanical systems will 

be presented, with its formulation found in Wahrhaftig (2017). In this work, the theories for modal analysis were 

used in a polygonal metal pole of 50 meters high, top diameter of 0.45 meters and base diameter of 1.50 meters, 

as shown in Figure 2. 
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2  Theoetical basis and results 

The studies by Brasil and Silva (2015), show that among the modes of the structural typology described here, 

more than 90% of the dynamic response is contained in the first vibration mode (φ1) presente in Figure 1 

Figure 1 - Typology of the studied vibration mode. 

 

Brasil and Silva (2015) and ABNT NBR 6123 (1988) indicate that tall structures with a reduced cross 

section, of high slenderness, usually present vibration modes with frequencies below 1Hz, showing the need for a 

dynamic analysis. The first vibration mode of the simplified dynamic model supported by ABNT NBR 6123 

(1988), can be written as (1), where 𝑧𝑖 is the height of the mass, 𝐻 is the total height of the structure and the 

exponente 𝛾 is given by Table 1. 

 𝜑𝑖 = (
𝑧𝑖

𝐻
)

𝛾

. (1) 

Table 1 - Parameters for determining dynamic effects by ABNT NBR 6123 (1988). 

Type of constructions 𝛾 

Concrete towers and chimneys, variable section 2,7 

Steel towers and chimneys, uniform section 1,7 

𝛾 is the exponent of the function that represents the 

vibration mode; 
 

Wahrhaftig (2017) reports “Once the effect of the axial compressive force is to reduce the stiffness of the 

members of the structure, the approach to aspects involving a concept of geometric stiffness is related, at the same 

time, to the analysis of the elastic stability of structural systems. Timoshenko (1985) presents problems of elastic 

instability of prismatic bars where it is possible to verify reduction of stiffness due to the presence of normal 

efforts. For the buckling load, the structure does not offer resistance to any disturbance that occurs on it and when 

such disturbance occurs, the displacements in the configuration continue to increase without the need to additional 

loads. This suggests that when this time is reached, the displacements of the structure, for the critical load, will 

grow indefinitely, meaning that, on the other hand, the rigidity of the structure has become null", so it is possible 

to write the rigidity of the structure by next difference. 

 [𝐾] = [𝐾0] − [𝐾𝑔]. (2) 
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Where 𝐾0 represents the elastic stiffness in a function of the mechanical properties of the structure and 

the term 𝐾𝑔 it’s the geometric stiffness in function of mechanical properties and axial loading. Geometric stiffness 

can be calculated with the Rayleigh method based on the principle of energy conservation. Its formulation for 

continuous systems contains the form function 𝜙, that represents the mode of vibration and its application requires 

that the modal mass of the structure be. 

 𝑚 = ∫ 𝑚̅𝜙2𝑑𝑧 → 𝑚 = ∑ 𝑚̅𝑖𝜙𝑖
2∆𝑧𝑖

𝑛

𝑖=1

𝐻

0

. ((3) 

the modal elastic rigidity 

𝐾0 = ∫ 𝐸𝐼 (
𝑑2𝜙

𝑑𝑧2
)

2

𝑚̅𝑑𝑧
𝐻

0

→ 𝐾0 = ∑ 𝐸𝐼𝑖 (
𝑑2𝜙𝑖

𝑑𝑧𝑖
2 )

2

∆𝑧𝑖

𝑛

𝑖=1

. ((4) 

and modal geometric stiffness 

𝐾𝑔 = ∫ 𝑁 (
𝑑𝜙

𝑑𝑧
)

2

𝑚̅𝑑𝑧
𝐻

0

→ 𝐾𝑔 = ∑ 𝑁𝑖 (
𝑑𝜙𝑖

𝑑𝑧𝑖
)

2

∆𝑧𝑖 .

𝑛

𝑖=1

 ((5) 

wehre 𝑚̅ is the mass of the structure, 𝑑𝑧 is the infinitesimal length of the axis of the bar that represents the body 

of the structure and 𝑁 is the normal axial force. 

The structure discussed has a behavior similar to a cantilever, so the shape functions must meet the 

boundary conditions, Wahrhaftig et. al (in press) indicate that in numerical solutions of differential equations by 

the technique of 'test functions or form functions', they have functions that are only approximations, or trials, and 

not exact solutions. Different functions, even meeting the boundary conditions of the problem, can lead to different 

results. Theoretically, in the Rayleigh method, it is enough to respect the conditions of the first type, those of 

Dirichlet, as visible ni Figure 2. 

Figure 2 – Relationship between physical model and developed mathematical model. 
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To optimize the natural frequencies, the minimization of errors was performed with the Solver tool of 

Microsoft Exc. Brasil e Silva (2019) report that “Excel's Solver can be used to solve optimization problems where 

non-linear continuous problems, Solver uses a version of GRG (“Generalized Reduced Gradient”). Two shape 

functions were used for the first vibration mode, that meet the conditions imposed in the Figure 2 and that will be 

applied in the equations ((3), ((4) e ((5) through a discretized model, as visible Figure 2. The shape functions are 

(1) and the following trigonometric function with factors 𝑎 an 𝑏. 

 𝜙𝑖(𝑧𝑖) = (1 − 𝑐𝑜𝑠 (
𝜋𝑧𝑖

2𝐻
)) (𝑎

𝑧𝑖

𝐻
+ 𝑏). (6) 

According to Wahrhaftig et. al (in press) the factors a and b can be obtained by optimizing the error, 

between their real values and imposed initial values, thus composing the vector {𝑐}. 

 {𝑐}𝑇 = [𝑎 𝑏]. (7) 

which must be determined in order to minimize the function 

 𝑓(𝑐) = 𝑟 ∑[𝜙𝑖( {𝑐}, 𝑧𝑖) − 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖)]

2
.

𝑛

𝑖=1

 (8) 

or 

 𝑓(𝑐) = 𝑟 ∑[𝑓( 𝜙𝑖( {𝑐}, 𝑧𝑖)) − 𝑓𝑀𝐸𝐹( 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖))]

2
.

𝑛

𝑖=1

 (9) 

where 𝑟 is a penalty factor used to adjust the magnitude of errors. The values of 𝜙𝑖𝐹𝐸𝑀
( 𝑧𝑖) until 𝜙𝑛𝐹𝐸𝑀

( 𝑧𝑛), are 

the modes obtained at each coordinate discretized from the finite element model (FEM). The frequencies f and 

f𝐹𝐸𝑀 are provided by the proposed formulation and the frequency obtained with the finite element model. The 

restriction, described in Figure 2, imposed to represent the first mode of vibration is 

 𝜙𝑛( {𝑐}, 𝐻) = 1. (10) 

In order for this restriction to be satisfied, we start with the following values for the vector{𝑐} 

 {𝑐}𝑇 = [0 1]. (11) 

Similar to function (8) the function (12) and (34) were used to optimized 𝛾 in function (1) 

 𝑓(𝛾) = 𝑟 ∑[𝜙𝑖( 𝛾, 𝑧𝑖) − 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖)]

2
.

𝑛

𝑖=1

 (12) 

or 

 𝑓(𝛾) = 𝑟 ∑[𝑓( 𝜙𝑖( 𝛾, 𝑧𝑖)) − 𝑓𝑀𝐸𝐹( 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖))]

2
.

𝑛

𝑖=1

 (13) 

where its starting value is present in Table 1. 

To apply the Rayleigh method it’s necessary to solve the first and second derivatives of the trial function 

in relation to vertical length, where the first and second derivatives for the function (1) are. 

 

 
𝑑𝜙𝑖

𝑑𝑧𝑖
=

𝛾

𝐻𝛾
𝑧𝑖

𝛾−1;
𝑑2𝜙𝑖

𝑑𝑧𝑖
2 =

𝛾(𝛾 − 1)

𝐻𝛾
𝑧𝑖

𝛾−2. (14) 
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Similarly, the first derivative of the function (6), is 

 
𝑑𝜙𝑖

𝑑𝑧𝑖
=

𝜋

2𝐻
𝑠𝑖𝑛 (

𝜋𝑧𝑖

2𝐻
) (

𝑎𝑧𝑖

𝐻
+ 𝑏) + (1 − 𝑐𝑜𝑠 (

𝜋𝑧𝑖

2𝐻
))

𝑎

𝐻
.   (15) 

and the second 

 
𝑑2𝜙𝑖

𝑑𝑧𝑖
2 =

𝜋2

4𝐻2
𝑐𝑜𝑠 (

𝜋𝑧𝑖

2𝐻
) (

𝑎𝑧𝑖

𝐻
+ 𝑏) +

𝑎𝜋

𝐻2
𝑠𝑖𝑛 (

𝜋𝑧𝑖

2𝐻
).   (16) 

Numerically, the values of elastic stiffness, geometric stiffness and modal mass for the 𝛾 in table 1 can be 

obtained for discussed structure, their values are shown in the Table 2. In the hypothesis of the trigonometric 

function (6) with coefficients in the equation (11), the dynamic parameters were obtained and are presente in Table 

3. In table 4 are presente the modal parametrês obtained with FEM model. In the hypothesis of considering 

geometric nonlinearity influenced frequencies and periods, the geometric nonlinearity was considered by 

multiplying the modulus of elasticity by the factor 0.97, which represents the ratio between the effective elastic 

stiffness K and the initial elastic stiffness K0 in the evaluated structure. 

Table 2 – Parameters obtained for each coefficient given by NBR 6123. 

γ = 2.700 γ = 1.700 

K0 (Nm²) 19161.896 K0 (Nm²) 23193.833 

Kg (Nm²) 582.729 Kg (Nm²) 662.508 

K (Nm²) 18579.167 K (Nm²) 22531.325 

K=K0-Kg 

f1 (s-1) 3.803 f1 (s-1) 3.436 

f1 (Hz) 0.605 f1 (Hz) 0.547 

T1 (s) 1.652 T1 (s) 1.828 

K=K0 

f1 (s-1) 3.862 f1 (s-1) 3.487 

f1 (Hz) 0.615 f1 (Hz) 0.555 

T1 (s) 1.627 T1 (s) 1.802 

Table 3 – Parameters obtained with the trigonometric function. 

K0 (Nm²) 24815.843 

Kg (Nm²) 680.434 

K (Nm²) 24135.409 

K=K0-Kg 

f1 (s-1) 3.569 

f1 (Hz) 0.568 

T1 (s) 1.761 

K=K0 

f1 (s-1) 3.619 

f1 (Hz) 0.576 

T1 (s) 1.736 

Table 4 – Frequency and period obtained with FEM model (Finite Element Method). 

K=K0-Kg K=K0 

f1 (s-1) 3.245 f1 (s-1) 3.297 

f1 (Hz) 0.516 f1 (Hz) 0.525 

T1 (s) 1.937 T1 (s) 1.905 
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In possession of dynamic parameters and vibration modes for the conditions of the Table 2, Table 3 and Table 

4 it’s possible to apply the optimization methods discussed later in this study. The optimization process adopted 

minimizes the errors between the mode or frequency, obtained between the finite element model and the modes or 

frequencies provided by the functions (1) and (6). 

Table 5 – Resume of errors between the frequencies obtained and those given by the MEF model 

Analysis of results Error  Error 

Criteria γ a b f1 para K=K0 (Hz) f1 para K=K0-KG (Hz) K0 K0-KG 

1 2.700 - - 0.615 0.605 17.12% 17.20% 

2 1.700 - - 0.555 0.547 5.74% 5.91% 

3 2.122 - - 0.554 0.546 5.65% 5.65% 

4 1.943 - - 0.550 0.541 4.78% 4.83% 

5 - - - 0.576 0.568 9.74% 9.99% 

6 - 0.451 0.548 0.563 0.559 7.25% 8.27% 

7 - 0.300 0.700 0.562 0.555 7.10% 7.51% 

8 - - - 0.525 0.516 0.00% 0.00% 

Table 6 – Description of situations for each optimization. 

Criteria  Description 

1 First Tentative function of the NBR 

2 Second tentative function of the NBR 

3 Optimization in ϕ1 regarding the tentative function of the NBR 

4 Optimization in f1 regarding the tentative function of the NBR 

5 Trigonometric function 

6 Optimization in ϕ1 by the trigonometric function with factors a and b 

7 Optimization in f1 by trigonometric with factors a and b 

8 FEM model 

The criteria 3, 4, 6 and 7 in Table 6 were obtained with the help of the Solver tool of Microsoft Excel, 

where the mathematical representation of the optimization performed is present in the functions (8), (9), (12) and 

(13). The procedure performed has the vibration mode restriction necessarily provide the value 1 in the position 

corresponding to the top of the structure and the first derivative of the form function to provide the value of 

𝜑′(0) = 0 at the base of the structure. In criteria 3 and 6 the error reduction was performed directly in vibration 

mode, but in the criteria 4 and 7 the error reduction was in the frequencies. In Figure 3 all forms for the first mode 

of vibration studied in this work are presented. 

Figure 3 – List of shapes of the first studied modes of vibration. 
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3  Conclusion 

Based on the results shown, it is possible to conclude that the analyzed structure has a significant dynamic 

behavior, the vibration frequency for the first mode is in the order of 0.5 Hz. The effects due to geometric stiffness 

generated approximately 1% smaller differences in frequencies and, as expected, in the hypothesis of its 

consideration, a reduction in the stiffness of the structure is observed. This difference will be more accentuated 

with the increase of vertical actions, which cause normal efforts to the structure. 

It is possible to check through the Table 5 an error of approximately 17%, in relation to the FEM model, to 

obtain the first natural frequency of vibration of the respective structure when using 𝛾 = 2.7, given by NBR 6123. 

This error decreases to 6% when used 𝛾 = 1.7, also given by the same standard. The use of the trigonometric 

function showed an error 10% with respect to FEM model. 

Using optimization techniques, the exponential function presented the smallest error for calculating the 

frequency, about 5%, with obtaining an optimized 𝛾 equal to 1.943. For the trigonometric function, an error of 

8% in relation to FEM model, obtaining the optimal values of 𝑎 = 0.3 and 𝑏 = 0.7. 

So, it is concluded that the use of optimization techniques has significantly improved, in the order of 20%, 

the calculation of the fundamental frequency of the structure. Thus, in simulations of very complex problems, 

which require a high computational cost, the use of this method can be very useful to obtain values with very 

reasonable precision, without the need for all the formulation and computational time of the FEM. 

It is suggested for future studies a comparison between displacements and dynamic solicitation efforts 

obtained by the FEM model, in problems with several degrees of freedom, with those obtained with the aid of this 

simplified analysis, with only one degree of freedom, using the modes determined by optimization techniques. 
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