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Abstract. Automatic landing systems are heavily dependent on sensors to map the environment around the aircraft
in order to support the subsequent control strategy to accomplish the task. This work proposes a discrete-time
Extended Kalman Filter (EKF) formulation, using camera measurements, to estimate the position and orientation
(yaw) states of a landing platform, fixed on top of a Ground Vehicle (GV). GV moves freely at constant speed
The camera is attached to an Unmanned Aerial Vehicle (UAV) and is pointed down. For each image taken by the
camera, a computer vision algorithm returns the relative position and attitude (pose) of each identified marker. Its
is adopted the open-source library Aruco for generating the printable square-based fiducial markers. Its adoption
is justified because it allows quick fixation to the landing platform, being easily detectable and providing a robust
determination of the relative pose. The EKF is formulated as a constant velocity model for the pose estimation.
The simulation consists of the UAV following the GV along a path, where the desired states are estimated from
noise-corrupted measurements. The proposition is validated via Monte Carlo simulation. The results showed that
the proposed formulation for the EKF is able to estimate the desired states when operating at low speeds.

Keywords: pose estimation, uav, ground vehicle, automatic landing, aruco.

1 Introduction

Cooperation between Ground Vehicles (GV) and Unmanned Aerial Vehicles (UAVs) allows the develop-
ment of many applications that exploit the advantages of each vehicle. This combination helps to circumvent the
limitations of each vehicle, as the energy storage capacity of the batteries for small UAVs and the surrounding
exploration and mapping for GVs. In this scenario, the use of autonomous vehicles expands the possibilities of
applying these technologies in cooperative activities. Considering that both vehicles are moving, the autonomous
landing system embedded in the UAV needs to estimate the states that describes the GV movement. To this end,
this work proposes an estimation system based on the Extended Kalman Filter (EKF) formulation, using camera
measurements to estimate the position and orientation (yaw) of a landing platform (LP) fixed on top of the GV.
The proposed solution explores the properties of quaternion algebra in the EKF formulation and the use of artificial
planar markers as strategy to easily embed the algorithm in flight controllers of small UAVs. The formulation is
validated by a Monte Carlo simulation.

The rest of this paper is organized as follows: Section 2 begins by presenting some necessary concepts
required in the developments, the geometrical relations in the formulation and presents the dynamic model for
the GV and UAV; Section 3 present the EKF algorithm and states the equations proposed to solve the estimation
problem; Section 4 details the simulation process and shows the results obtained; and, finally, a conclusion is
presented in Section 5.

2 Problem definition and system modeling

The estimation system proposed in this work is to be used in an automatic landing system for a UAV (a
quadrotor) to land in a platform fixed on top of a GV (a car). A representation of this scenario is shown in Fig.
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1a. For this operation, the UAV is equipped with sensors to estimate its position and attitude with respect to an
external reference frame. The GV moves at a constant speed and travels an unpredictable path. There will be no
data exchange between the GV and the UAV.

To ease the estimation of LP pose states, five ARUCO markers were printed and fixed on it, as can be seen in
Fig. 1c. The Aruco markers are artificial square-based fiducial markers, proposed in Garrido-Jurado et al. [1] and
Romero-Ramirez et al. [2], that allows to obtain the relative three dimensional position and attitude of each marker
with respect to the camera. Thus, the objective is to estimate the LP states through these indirect measures.

2.1 Fundamental concepts and definitions

Before beginning the description of the system’s model, this section presents a set of conventions that will be
adopted throughout the text.

Scalars are represented by lowercase letters as a ∈ R, algebraic vectors are column matrices represented by
bold lowercase letters as a ∈ Rn and matrices are represented by bold uppercase letters A ∈ Rp×q . The transpose
vectors and matrices are respectively indicated by a> and A>. The inverse matrix is denoted as A−1. Also,
In ∈ Rn×n is an identity matrix, with ones in the main diagonal and zeros elsewhere. The algebraic projection
of geometric vector ~a in a Cartesian coordinate systems (CCS) SA is denoted as aA. The direction cosine matrix
(DCM) DB/A ∈ SO(3) represents the attitude of SB w.r.t. SA. SO(3) is a matrix of the special orthogonal

group of order 3 and implies that DA/B =
(

DB/A
)>

=
(

DB/A
)−1

and its determinant is equal to 1. It is

such that the representation of a vector ~a in SB and SA is related by aB = DB/AaA and the transformation

in the opposite direction is denoted by aA =
(

DB/A
)−1

aB . This work often parameterizes the DCM by a
quaternion of rotation that is a four-component vector with some operations defined on it. Its general form is
represented as q ,

[
q>1:3 q4

]> ∈ R4, where q1:3 ,
[
q1 q2 q3

]> ∈ R3. An explanation of attitude representation
by quaternions and its properties can be found in Shuster [3] and Markley and Crassidis [4].This work adopts the
notation presented in the last one. Two important operations are the quaternion products qA⊗qB and qA�qB , as
stated in Pittelkau [5]. For the pair of quaternions qA and qB , these products can be expressed as matrix products,
defined by:

qA ⊗ qB =
[
qA ⊗

]
qB =

qA4 I3 −
[
qA1:3 ×

]
qA1:3

−
(
qA1:3

)>
qA4

qB , and (1)

qA � qB =
[
qA �

]
qB =

qA4 I3 +
[
qA1:3 ×

]
qA1:3

−
(
qA1:3

)>
qA4

qB , where (2)

[
q1:3 ×

]
,


1 −q3 q2

q3 1 −q1
−q2 q1 1

 ∈ R3×3 (3)

is the skew-symmetric matrix of the vector q1:3. Note that qA ⊗ qB = qB � qA.
The DCM parameterization by q is defined as: DB/A

(
qB/A

)
,
(
q24 − ‖q‖

2
)

I3 − 2q4
[
q1:3 ×

]
+ 2q1:3q>1:3

and requires that ‖q‖ = 1. Note that DD/A
(
qD/A

)
= DD/C

(
qD/C

)
DC/B

(
qC/B

)
DB/A

(
qB/A

)
represents suc-

cessive rotations, that is equivalent to the quaternion operations qD/A = qD/C⊗qC/B⊗qB/A, and
(

DB/A
)−1
≡[ (

qB/A
)−1 ⊗ ]. Thus, considering the schematic view present in Fig. 1b, the position vector ~p i and the attitude

qi/R w.r.t. SR, for i = 1, . . . , 5, are related to the measurements taken by the camera at the UAV by:

~p i = ~r + ~c+ ~s i, and (4)

qi/R = qi/C ⊗
(

qB/C
)−1
⊗ qB/R, (5)

where ~r is the position vector of SB (UAV position) with respect to (w.r.t.) SR; ~c is the position vector of SC
(camera position) w.r.t. SB - that is ~0 for this case; ~si is position of the center of each marker SiP w.r.t. SC –
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each marker has an unique identifier number, made available when the marker is detected in the processing of each
frame; and SP is the the LP CSS that is coincident with S1P , as shown in Fig. 1c.

(a) Description of the components involved in the model-
ing.

(b) Diagram of the geometric relationship of the CCSs
adopted in the modeling.

(c) Landing platform
with five ARUCO
markers.

Figure 1. Representation of model components and visualization of their geometric relationships. The red, green,
and blue colors of the coordinate systems represent the x-axis, y-axis, and z-axis, respectively.

2.2 Ground Vehicle Model

The GV is usually modeled by the so-called bicycle model, as described by Popp and Schiehlen [6] and
Polack et al. [7]. An adapted version is adopted here and the planar movement of the GV is modeled by the
following set of non-linear equations: 

ẋg

ẏg

α̇

θ̇

 =


v cos (α)

v sin (α)

v tan(θ)
d

−1
τs
θ + 1

τs
θ̄

 , (6)

where: g , [xg yg α θ]
> is the state vector of the GV model; xg and yg are the GV position in SR; α is the

orientation angle, formed by the longitudinal axis of the GV w.r.t the x-axis of SR; θ ∈ [−θmax, θmax] is the
steering angle of the wheels in relation to the longitudinal axis of the GV; v is the modulus of the linear velocity
of the vehicle; d is the wheelbase of the GV; and τs is the time constant of the steering wheel control.

2.3 Unmanned Aerial Vehicle Model

A UAV dynamics is modeled by the set of nonlinear equations, as developed by Mahony et al. [8], and this
work adopts the following model:



ẇ

ṙR

v̇R

q̇B/R

ω̇R


=



1
τm

(
− w + kmw̄

)
vR

1
m

[
0 0 FC

]>
+ 1

mFg

1
2Ξ
(
qB/R

)
ωR

J−1
[

(JωR)×
]
ωR + J−1TCR


, (7)

where the settling time τm and the proportional gain km are constants for the motor and propeller assembly, that
can be obtained experimentally; w , [w1 w2 w3 w4]

> ∈ R4 are the current rotation speed of the propellers, with
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wj ∈ [0, wmax], for j = 1, . . . , 4; w̄ , [w̄1 w̄2 w̄3 w̄4]
> ∈ R4 are the commands of rotational speed for the

propellers; and rR , [r1 r2 r3]
> ∈ R3 and vR , [v1 v2 v3]

> ∈ R3 are the linear position and velocity of SB
w.r.t SR; qB/R and ω , [ω1 ω2 ω3]

> ∈ R3 are the attitude and angular velocity of SB w.r.t SR. The constants
m ∈ R and J ∈ R3×3 are, respectively, the mass and the rotational inertia matrix (a diagonal matrix expressed as
diag(Jx, Jy, Jz)). The rotation of the propellers results in thrust forces f , [f1 f2 f3 f4]

> ∈ R4 and, due the drag
effect, a reaction torque d , [d1 d2 d3 d4]

> ∈ R4, where fi = ktw
2
i and di = (−1)i+1kdw

2
i , for i = 1, 2, 3, 4,

with kt and kd being constants experimentally determined. Thus, the modulus of the thrust force FC ∈ R along
the z-axis of SB and the control torque TCR ∈ R3 are obtained by the following relation:

FC

TC
R

 =


1 1 1 1

l1 −l1 −l1 l1

−l2 −l2 l2 l2

kdt −kdt kdt −kdt

 f, (8)

where l1 is the distance from the front and back rotors to SB’s y-axis; l2 is the lateral distance of the rotors to SB’s
x-axis; and kdt = kd

kt
.

3 Filter formulation

As described in Fang et al. [9] and Bar-Shalom et al. [10], the EKF is a sub-optimal solution to the problem of
state estimation in the minimum mean-squared error (MMSE) sense, by linearize the nonlinear system dynamic and
measurement models about the current estimated state, using the first-order Taylor series approximation. Assuming
that the nonlinear system can be described by the set of discrete-time difference equations:

xk+1 = fk (xk,uk) + wk, and (9)
yk+1 = hk+1 (xk+1) + vk+1, (10)

where the eq. (9) is the system dynamics and the eq. (10) the measurement model, x is the state vector; u
is a known input; fk(·) and/or hk(·) have some nonlinear term, with wk and vk+1 representing, respectively,
the process noise and the measurement noise, which are modeled as uncorrelated, zero mean, white Gaussian
processes, whose covariances are defined by the matrices Qk and Rk; the initial conditions being x̂0 = x(0) ∈ Rn
and P0 = P(0) ∈ Rn×n, for k ∈ Z∗; the EKF algorithm is stated as the two steps (prediction and update) given
by:

Prediction:

x̂−k+1 = fk(x̂k,uk)

P−k+1 = FkPkF>k + Qk

Update:

ŷk+1 = hk+1(x̂−k+1)

PY = Hk+1P−k+1H>k+1 + Rk+1

PXY = P−k+1H>k+1

K = PXY
(
PY
)−1

x̂+
k+1 = x̂−k+1 + K

(
yk+1 − ŷk+1

)
P+
k+1 = (I−KHk+1) P−k+1 (I−KHk+1)

>
+ KRk+1K>

where x̂ ∈ Rn is estimated state vector; P ∈ Rn×n is the covariance matrix of x̂; yk+1 ∈ Rm is the measurement
vector; F = ∂fk(·)

∂x̂ ∈ Rn×n; and H = ∂hk(·)
∂x̂ Rm×n.

Adopting a discrete-time model of constant linear velocity and constant angular velocity (parameterized by a
quaternion), the state equation of the EKF is:
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

piRk+1

viRk+1

...

qP/Rk+1

ωk+1


=



 I3 TsI3

03×3 I3

piRk
viRk


...

qP/Rk + Ts

2 Ξ
(

qP/Rk

)
ωk

ωk


, (11)

where the state vector is defined by x ,
[
(p1
R)> (v1

R)> . . . (p5
R)> (v5R)> (qP/R)> (ω)>

]> ∈ R37; pi and
vi correspond, respectively, to the linear position and velocity of the i-th maker; and q and ω are, respectively,
the parameterized yaw angle and the angular velocity of the LP; Ts[s] is the step time between the samples;

i = 1, . . . , 5; and Ξ (q) ,

q4I3 +
[
q1:3 ×

]
−q>

1:3

.

The measurement equation obtains five relative position vectors of the planar artificial markers w.r.t. SC and
also five relative attitude vectors qi/C ≡ qP/C , for i = 1, . . . , 5, which are ideally equals, since all markers are
aligned in the LP, as shown in Fig. 1c. Thus, the measurement model is defined by:



p1
Rk+1

...

p5
Rk+1

q1/C
k+1

...

q5/C
k+1


=



(
DB/C

)>
DB/R(qB/R)

(
p1
R − rR

)
...(

DB/C
)>

DB/R(qB/R)
(
p5
R − rR

)
qB/C �

(
qB/R

)−1 � qP/R
...

qB/C �
(
qB/R

)−1 � qP/R


. (12)

4 Simulation and Results

An overview of the estimation system and its relationship to the entire system is presented in Fig. 2. For this
proposal, a sampling time of Ts = 35 [ms] was adopted for the EKF, considering 25 [ms] to acquire the frame
plus 10 [ms] of processing time. The estimation was evaluated for three cases of GV speed: C1) v = 3 [m/s];
C2) v = 6 [m/s]; and C3) v = 12 [m/s]. The evaluation of the statistical properties of the estimated states was
conduced by Monte Carlo method, a numerical inference based on sampling of simulated (pseudo-)random data,
with 100 runs per case. For each run, a random zero-mean Gaussian noise is added to the measurements, with
standard deviation of±0.1 [m] for si/C and±5◦ for qi/C . For each of the three cases analyzed, the final estimated
value for the path p̂k , [xk yk]> and orientation α̂k for each marker is computed by the average of the ensemble
of 100 executions, at each sample time. The estimation error ε is computed by an Euclidean norm, between the
true value and the mean of the ensemble.

The GV and UAV are simulated with eq. (6) and eq. (7), respectively, using a 4th-order Runge-Kutta method,
with a constant step time of h = 1 [ms]. Table 1 contain the parameters of the vehicles adopted in the simulation.
The UAV starts at r0 = [0 0 10]

>
[m] and the GV at [xg0 y

g
0 ]> = [0 0]

>
[m]. The UAV follows the GV position

along the path. The LP is assumed to be at 1.6 [m] above the ground and the UAV descends to 0.4 [m] above the
LP. The GV is commanded to follows the path generated by:

ȳg(xg) = 30 sin

(
2π

1

500
xg
)

+ 20 sin

(
2π

1

200
xg
)

[m]. (13)

The results of the simulations are summarized in the Fig. 3, Fig. 4, and Fig. 5. In all these cases, the ability
to estimate the position and orientation states of the LP by the proposed formulation are demonstrated. However,
the estimation error increases with GV speed, specially the error of the markers positions, as can be seen in Fig. 5.
This can be caused by the linearization required by the EKF and the discrete-time formulation. The increase of the
GV velocity decreases the predictive capacity of both models, for the EKF constant sampling time Ts.
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Figure 2. Representation of interaction between the modeled systems.

Table 1. Parameters adopted in simulation.

Parameter Value Parameter Value Parameter Value

m 1.2 [kg] kd 3.08× 10−7 Fg [0 0 g]
>

[N ]

J diag(0.15, 0.015, 0.03) [kg ·m2] kp 1.00 d 3.5 [m]

km 1.28× 10−5 l1 0.25 [m] τs 1.0 [s]

τm 0.1 [s] l2 0.25 [m] θmax 20º

0 50 100 150 200 250 300 350 400 450 500

x [m]

-55

-30

-5

20

45

y
 [

m
]

Path taken by the Ground Vehicle and estimated positions

0 10 20 30

0

10

20

30

Figure 3. Comparison between the reference path, the path taken by the GV and the estimated value of SP path,
in the three cases C1 (p̂3), C2(p̂6), and C3 (p̂12).
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-50
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3
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0

0.5
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3
 [

º]

0 100 200 300 400 500
-50

0

50

100

6
 [

º]

0 100 200 300 400 500
0

0.5

1

1.5

2

6
 [

º]

0 100 200 300 400 500

x [m]

-50

0

50

100

1
2
 [

º]

Comparison of the true and estimated Ground Vehicle's yaw angle

0 100 200 300 400 500

x [m]

0

1

2

3

1
2
 [

º]

Figure 4. Comparison between the true and estimated angle of orientation of the GV (equivalent to the LP) and the
estimation error for the cases C1 (α̂3 and εα3 ), C2 (α̂6 and εα6 ), and C3 (α̂12 and εα12). The quaternion is converted
to the Euler angles parameterization, in the sequence 123, see Markley and Crassidis [4, p. 364].
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Figure 5. Estimation error (ε) for each one of the five markers on the LP (l1, . . . l5) for the cases C1, C2, and C3.

5 Conclusions

The simulation results showed that the proposed formulation fulfills the objective of estimating the position
and orientation of the landing platform on top of the ground vehicle. The proposed discrete-time Extended Kalman
Filter formulation provides an easy implementation for embedded computers and presented a satisfactory result at
low speeds, but decreasing its performance as the GV speed increases. The next step is to evaluate this proposition
with an experimental setup with alternatives formulations for the filter, in order to better deal with the nonlinearities
of the model.
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