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Abstract. Periodic structures have been used for many years in different areas such as aerial and terrestrial 
vehicles, civil engineering structures and many other products. The term periodic structures come from the 
repetitive arrangements of smaller structural units, also known as cells. Among the different phenomena 
concerning wave propagation of such systems, the most important is probably the Bragg scattering effect. The 
Bragg scattering occurs when the wavelength becomes of comparable size to the structural cells. This results in 
frequency ranges where waves cannot propagate, known as bandgaps. In this context, this paper proposes the study 
of the formation of bandgaps on a mono-coupled periodic structure consisting of longitudinal wave propagation 
in rods. The paper proposes the modeling and analysis of finite periodic structures with exponentially varying 
cross-section area. An investigation is conducted on the effects of using symmetric and asymmetric cell matrices. 
The structure is modeled using the receptance and dynamic stiffness matrices. The transfer matrix method is used 
to determine the properties of the structure from the transmissibility of a single cell. Results show that asymmetric 
cells have a wider frequency range when compared to symmetric cells; however, occurring at higher frequencies 
ranges. 

Keywords: periodic structures, exponentially varying cross-section, bandgap, symmetrical structure, asymmetric 
structure. 

1  Introduction 
 
Periodic structures are arrangements of structural units that have periodicity, where these units are called 

cells. Recently, the study of periodic structures in mechanical vibrations has been of great interest in the scientific 
community, mainly because these structures present the phenomenon known as the Bragg scattering effect. This 
phenomenon occurs when the wavelength becomes comparable to the length of structural cells, resulting in 
frequency regions where waves do not propagate. Such regions are known as bandgaps [1]. 

The study of periodic structures probably began with the work by Lord Rayleigh [2] that investigated 
continuous periodic structures. Later, in the 90's decade, the study regained attention by the pioneering work of 
Mead [3]. In recent years, several areas of engineering have approached the structural vibration of periodic 
systems, such as in civil engineering with the use of a new type of periodic foundation to serve as a vibration 
isolator [4], and for the control of seismic events [5-6]. A novel compounded gearbox periodic strut was used to 
control noise in a helicopter cabin [7]. Applications, in general, seek to optimize the attenuation bands to reduce 
vibration propagation within a specific frequency range, usually at lower frequencies. 

Recent research shows the behavior of periodic structures of finite and infinite structures [8], and also, in the 
case of mono-coupled periodic structures composed of symmetric and asymmetric cells [9]. In this context, this 
paper proposes the study to obtain the so-called bandgaps on a mono-coupled periodic structure consisting of 
longitudinal wave propagation in rods. The rod is composed of finite periodic structures with exponentially varying 
cross-sectional areas. The theory of longitudinal wave propagation in rods with variable cross-sections is well 
developed in the literature [10]. Gan et al. [11] discuss the wave propagation in two examples of non-uniform rods, 
one of them with the cross-section varying exponentially. The authors developed a study considering the traditional 
theories of Love and Mindlin-Herrmann [12]. 
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The approach used in this work is based on the attenuation band, specifically, the ones that occur at the lower 
frequencies ranges. Also, attention is given to the bandwidth of this bandgap and the maximum attenuation 
frequency within this band. 

The structure is modeled using the dynamic stiffness and receptance matrices. The transfer matrix is used to 
determine structure properties based on the transmissibility of a single cell. The transfer matrix is an alternative 
formulation that groups the applied forces and the resulting displacement at a given point in a state vector, resulting 
in reduced computational effort due to mathematical simplicity [13]. 

 

2  Modeling of a rod with variable cross-section area 
 
The system shown in Fig. 1(a) is a rod with variable cross-section. The cross-section area changes according 

to an exponential function. At the left-hand side, the cross-section is defined by 𝐴଴ = 𝜋𝑟଴
ଶ. At position 𝑥, the cross-

section is given by 𝐴(𝑥) = 𝐴଴𝑒ଶఉ௫. The other rod properties are the Young’s Modulus 𝐸, mass density 𝜌 and the 
length 𝑙. 

Figure 1: A rod with the cross-sectional area of varying in exponential 
 

According to Graff [10], the differential equation of the motion in the space domain is given by 
 

   
     2

0 0
A x

U x U x k U x
A x


                                                        (1) 

 

where 𝑘௢ = 𝜔ඥ𝜌 𝐸⁄  is the wave number of a rod with cross-section. With the cross-section governed by equation 
𝐴(𝑥) = 𝐴଴𝑒ଶఉ௟  the equation of motion in space domain reduces to 

 

      02 2
0

'''  xUkxUxU                                                             (2) 

 
To obtain the equation that describes the wave dispersion, assume the solution of the form 𝑈(𝑥) = 𝑈𝑒ି௝௞௫ 

and substitute in equation (2): 
 

    02 2
0

2  kkjk ,                                                                 (3) 

 
equation (3) has two solutions given by 

 

    kjkjk ˆ22
02,1                                                           (4) 

 

where 𝑘෠ = ඥ𝑘଴
ଶ − 𝛽ଶ. The real and imaginary parts of the two wavenumbers are shown in Fig. 2, which represent 

dispersion curves for a rod with exponentially varying cross-section area, where the following properties were 
considered E = 3 × (1 + 0.01𝑗) GPa, ρ = 1130 Kg mଷ⁄ , β = 4, l = 0.15 m and r଴ = 0.0247 m. 

The cut-off phenomenon visualized in Fig. 2 is one of the most typical characteristics of structures with 
exponential area variation. The real part of the wavenumber is non-zero in the cut-off region. It is known that no 
purely imaginary wavenumber can exist in lossy structures [14]. 
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Figure 2: Real and imaginary parts of the wavenumbers with the positive and negative propagating 
wavenumbers. 

 
To obtain the receptance and dynamic stiffness matrices for a rod with exponentially varying cross-section 

area assume the following solution 𝑈(𝑥) = 𝑐ଵ𝑒ି௝௞భ௫ + 𝑐ଶ𝑒ି௝௞మ௫, where 𝑘ଵ and 𝑘ଶ are two wavenumbers and 𝑐ଵ 
and 𝑐ଶ are the associated wave amplitudes. Two boundary conditions are evaluated 𝐸𝐴଴𝑈ᇱ(0) = −𝐹௅|ிೃୀ଴ and 
𝐸𝐴଴𝑒ଶఉ௟𝑈ᇱ(𝑙) = 𝐹ோ|ிಽୀ଴. The receptance and the dynamic stiffness matrices are given by 
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The system shown in Fig. 1(b) is rod with cross-sectional area of varying exponential decay. As previously 

considered, the smallest cross-section is defined 𝐴଴ = 𝜋𝑟଴
ଶ which in this configuration is on the right-hand side 

and the largest cross-section is on the left-hand side, where it is defined by 𝐴௟ = 𝐴଴𝑒ଶఉ௟. At position 𝑥, the cross-
section is given by 𝐴(𝑥) = 𝐴௟𝑒

ିଶఉ௫.  The receptance and the dynamic stiffness matrices are given by 
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3  Transfer matrix of the periodic structure composed of N cells 
 
A mono-coupled periodic structure composed of N identical periodic cells is shown in Fig. 3 
  

 

Figure 3: General one-dimensional structure comprised of 𝑁 periodic cells. Adapted from [15]. 
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The relationship between the force and displacement at the right end of the structure in Fig.3 to the force and 

displacement at the left end is given by 𝑞ோ
[ே]

= 𝑇ே𝑞௅
[ଵ], where 𝑞ோ = {𝐹ோ, 𝑈ோ}், 𝑞௅ = {𝐹௅ , 𝑈௅}் and 𝑇 = ൤

𝑇ଵଵ 𝑇ଵଶ

𝑇ଶଵ 𝑇ଶଶ
൨ 

is the transfer matrix of a single cell [16]. 
From the work of Rubin [16] it is possible to obtain the transfer matrix from the transformation of the 

dynamic stiffness matrix. Considering the dynamic stiffness matrices given by equations (6) and (8) and applying 
the transformation proposed by Rubin [16], the transfer matrices are 
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The four cases shown in Fig. 4 involve sets of symmetrical cells Fig. 4(a) and sets of asymmetrical cells Fig. 

4(b). 

 
Figure 4: Different configurations of a single cell (ai) and (aii) symmetric cells; (bi) and (bii) asymmetric cells 

 
The transfer matrix for the configurations in Fig. 4 can be obtained from two transfer matrices [9], one for 

each rod, so that 𝑇[ௌ௬௠] = 𝑇஻
௥௢ௗ𝑇஺

௥௢ௗ for Fig. 4(ai), 𝑇[ௌ௬௠] = 𝑇஺
௥௢ௗ𝑇஻

௥௢ௗ for Fig. 4(aii), 𝑇[ௌ௬௠] = 𝑇஺
௥௢ௗ𝑇஺

௥௢ௗ for Fig. 
4(bi) and 𝑇[ௌ௬௠] = 𝑇஻

௥௢ௗ𝑇஻
௥௢ௗ for Fig. 4(bii). 

 

4  Displacement transmissibility of the periodic structure composed of 𝑵 cells 
 

From the transfer matrix, it is possible to obtain the transmissibility 𝑇௥ = ቚ𝑈ோ
[ே]

𝑈௅
[ଵ]

ൗ ቚ of a periodic system of 

𝑁 cells. The displacement transmissibility of a symmetric cell system is given by|1 𝑇ଵଵ⁄ | or |1 𝑇ଶଶ⁄ |. For 
asymmetric cells the transmissibility is given by |1 𝑇ଵଵ⁄ | [9]. Thus, the transmissibility of the configurations in 
Fig. 4 using single-cell are respectively 
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The displacement transmissibility of the cells in Fig. 4 are plotted in Fig. 5, considering the cases of one, and 
three cells. The transmissibility of the cells in Fig. 4(ai) and Fig. 4(aii), as seen in equation (11), are equal. Bandgap 
limits and the minimum of transmissibility within the frequency band are also plotted. 

 
Figure 5: Displacement transmissibility of a periodic structure with (a) symmetric cells; (b) asymmetric cells Fig. 
4(bi); (c) asymmetric cells Fig. 4(bii); blue line  𝑁 = 1 cell; gray line 𝑁 = 3 cells; the red circles provide the stop-
band limits and the black square gives the maximum attenuation frequency within frequency band; (d) minimum 
of transmissibility within frequency band in relation to the number of cells; light blue line = symmetric cell; dark 
blue line = asymmetric cell. 
 

The displacement transmissibility response of a structure composed of symmetrical cells is represented in 
Fig. 5(a). Note in the figure that the increase in the number of cells does not interfere with the lower and upper 

limits of the stop-band, which continue with the same values from 
௅

ఒ௟௢௪௘௥
= 0.1929 to 

௅

ఒ௨௣௣௘௥
= 0.2140. The 

maximum attenuation, represented by the black squares in Fig. 5(a), has a linear increase as the number of cells 
increases. This linear increase can be seen in Fig. 5(d) through the light blue line. 

Figures 5(b) and 5(c) show the responses of the transmissibility of displacement of a structure composed of 
asymmetric cells. Note that Fig. 5(b) presents a wider stop-band when compared to the stopping band obtained by 

structure of symmetrical cell, with values of  
௅

ఒ௟௢௪௘௥
= 0.3450 to 

௅

ఒ௨௣௣௘௥
= 0.6203 for single cell, however note 

that that frequency band is in a higher frequencies range. Consequently, the maximum attenuation is also at a 
higher frequency. Still, in Fig. 5(b) it is possible to observe that the stop-band decreases as the number of cells 
increases. The maximum attenuation, represented by the black squares in Fig. 5(b), it also presents a linear increase 
as the number of cells increases. This linear increase can be seen in Fig. 5(d) through the dark blue line. 

Fig. 5(c) does not present the stop-band, which highlights the importance of the orientation of the asymmetric 
structure in relation to the position of the excitation force. Thus, for the asymmetric cell structure to present the 
attenuation band, it is necessary to orient the thinner side of the structure alongside the excitation force. 

The displacement transmissibilities of structures composed of symmetrical cells Fig. 4(ai) and Fig. 4(bi) or 
asymmetrical Fig. 4(bii) are analyzed in relation to the values of 𝛽. For this, the graphs shown in Fig. 6 are plotted, 

(b) 

(d) 

(a) 

(c) 
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in which the lower and upper limits of the stop-band and the maximum attenuation are also plotted. 
 

 
Figure 6: Displacement transmissibility of a periodic structure with different 𝛽 values (a) symmetric cells; (b) 
asymmetric cells Fig. 4(bi); the red circles provide the stop band limits and the black square gives the maximum 
attenuation frequency within frequency band; (c) and (d) Minimum transmissibility in relation to the 𝛽 values; 
light blue line = symmetric cell; dark blue line = asymmetric cell; (e) and (f) Stop band as a function of the 𝛽; light 
blue line = symmetric cell; dark blue line = single asymmetric cell .  
 

Figures 6(a) and 6(b) show the responses of the transmissibility of displacement of structures composed of 
symmetrical or asymmetrical cells, with 𝛽 values equal to one, three, five and seven. Note that in both cases, as 𝛽 
increases, the maximum attenuation and the stop-band increase. Such behavior can also be seen by Fig. 6(c) and 
6(e) for symmetric cells and by Fig. 6(e) and 6(f) for asymmetric cells. It is also possible to observe in the case of 
symmetric cells, that the maximum attenuation, represented by the black squares in Fig. 6(a), has a small 
displacement to the higher frequencies. As for the stop band, this one presents a higher magnification on the right 
side than on the left side. 

In the case of asymmetric cells, the maximum attenuation, represented by the black squares in Fig. 6(b), has 
a small displacement to the lower frequencies. As for the stop-band, this one presents a higher magnification on 
the left side than on the right side. 

(d) 

(a) (b) 

(c) 

(e) (f) 
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5  Conclusions 
 
This paper investigated the propagation of longitudinal waves in a rod composed of N cells, with 

exponentially varying cross-section area. First, it investigated the behavior of the structure when composed of 
symmetrical or asymmetrical cells. From this investigation, it was verified the importance of the orientation of the 
asymmetric cells in relation to the excitation force, in which to obtain the attenuation band, the thinner side of the 
rod must be oriented next to the excitation force. Furthermore, asymmetric cells when correctly oriented present a 
wider attenuation band when compared to symmetric cells, however in higher frequency ranges. Regarding the 
number of cells, the attenuation band of asymmetric cells reduces as the number of cells increases, while in the 
case of symmetric cells the attenuation band remains the same, only increasing the maximum attenuation within 
the band.  

Subsequently, the behavior of the frequency band and the maximum attenuation in relation to the 𝛽 value in 
structures with symmetrical or asymmetrical cells was investigated. In both cases, the higher the 𝛽 value, the 
higher the band of attenuation and maximum attenuation. However, in the case of symmetrical cells, the maximum 
attenuation occurs at higher frequencies as β increases and in the case of asymmetric cells, the opposite occurs, 
the maximum attenuation occurs at lower frequencies as β increases. 

Thus, in view of the proposed study, it was found that periodic structures composed of correctly oriented 
symmetrical or asymmetrical cells are valid for vibration attenuation and present vibration attenuation in frequency 
bands distinct from each other. 
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