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Abstract. In the last decades the development of metamaterial has motivated new solutions for noise control,
where labyrinthine type absorbers emerged recently. Due to their attracting features, these types of absorbers have
been investigated. The strategy is to bend and coil up quarter-wavelength sound damping tube. The original bulky
volume is decreased into a subwavelength scale, and the absorber with a coiling chamber can produce a high sound
absorption at low frequency. The aim of this paper is to establish reliable analytical and numerical approaches for
the designing and modeling of an effective metamaterial with space-coiling resonators. A duct-resonator acoustic
device is modeled by the Transfer Matrix (TM) and the Finite Element (FE). Simulated examples are performed
and the compared between the methods. The duct-resonator efficiency to attenuate the sound is evaluated.
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1 Introduction

Mufflers are important elements for noise reduction and control, reducing the sound transmitted along a duct
[1]. However, the noise control at low frequencies is a challenge due to weak interaction with the structure in the
case of long wavelength [2].

Helmholtz resonators (HR) are used effectively to attenuate noise in a narrow bandwidth around the resonant
frequency [3], having several applications in churches, dampers in tubes and ducts, among other [4]. However, for
low frequency noise, the use may be limited by volume restrictions [5], as the resonant frequency is governed by
physical dimensions, neck, cavity or both [3]. Thus, it is important to decrease the resonance frequency without
increasing the volume, or to reduce the volume without increasing the resonance frequency [5].

The use of space coiling resonators brings advantages in terms of dimensions. Shi and Mak [6] studied an HR
resonator with a spiral neck and their results showed a resonant frequency of 48 Hz for a four-turn spiral. Wang
et al. [2] studied a coiled partition resonator extending into a cavity and noted that by extending the partition the
wavelength of the resonant frequency can be up to 26 times the cavity length.

One way to increase the attenuation range in a duct is to distribute the HR’s periodically along the duct,
generating prohibited frequency bands, or bandgaps, where harmonic waves do not propagate [7].

The objective of this work is to use the transfer matrix method (TM) to model the duct noise attenuation
using coiled side branch HR arranged periodically. Equivalent Helmholtz resonator is modeled and a numerical
validation is done using Comsol Multiphysics software by means of the finite element method (FE).

2 Transfer matrix modeling

The 2D model consists of a Helmholtz like side-branch resonator, which comprises a coiling neck partition
inside a cavity connected to a main duct (Fig. 1a). The coiling neck dimensions are the width wn and the midline
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Figure 1. Model of coiling neck resonators: (a) coiling-HR and (b) equivalent-HR.

Ln, while the total cavity dimensions are height H and width W . The main duct dimensions are height Hd and
cross-section area Sd. The coiling neck gradually extends into the cavity center and the remaining cavity of area
Sc and side length Lc is created. When no coiling neck is included (Ln = 0) the side-branch resonator becomes
an HR with cavity and small neck (main duct thickness). In the reverse way, when the coiling neck increases, the
cavity area is reduced, and in the limit (Sc = 0) it becomes a coiling quarter wave length tube. An equivalent
model proposed by [2] is shown in Fig. 1b, where the coiling neck is unwind and becomes a straight one, to obtain
an equivalent HR with neck width wn, neck length Ln, cavity area Sc and side length cavity Lc.

The formulation presented is based on [2, 8]. The (TM) method is applied to model the sound transmission
in the equivalent model, which is divided in two partitions: (I) neck and (II) square cavity. For the partition I, the
acoustic pressures (p0 and pl) and volume velocities (U0 and Ul) at the neck input and output ends can be related
as [8]:

 p0I

U0I

 =

 cos(kL′
n) j ρc

Sn
sin(kL′
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j Sn
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 , (1)

where Sn is the neck cross-sectional area, L′
n is the effective length of the neck (details in section 2.1), ρ and c are

mass density and sound velocity of air, respectively. In order to account for the damping effect of air viscosity a
complex wavenumber is included, k = k̂(1 + jη/2), where k̂ = ω/c is the wavenumber, η is the loss factor, ω is
the circular frequency and c is air wave velocity.

For the partition II, the sound transmission between cavity entrance and bottom can be formulated as:
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where Sc and Lc are the cross-sectional area and length of the resonator cavity, respectively. By applying the
sound pressure and volume velocity continuity at the coupling point between neck and cavity, the relation between
acoustic pressures and volume velocities at the tube neck entrance and at the cavity bottom can be written as:
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Then, Eq. (3) can be rewritten in a compact form as:

 p0I
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Considering that the cavity bottom is a rigid wall, thus there is no volume velocity and UlII = 0. By
substituting in the Eq. (4) produces the HR acoustic impedance as:

ZHR =
p0I
U0I

=
A

C
, (5)

and the HR transfer matrix can be obtained as:

THR =

 1 0

1/ZHR 1

 . (6)

2.1 HR neck end corrections

The correction factor at the HR neck ends must be added to its physical length to obtain the effective length
(L′

n = Ln + δe + δi). A correction factor for the neck-cavity interface, proposed by [9], is given by:

δe = 0.82r
(
1− 1.33

r

R

)
, (7)

where r and R are the HR neck and cavity radius.
Obtained by boundary element analysis the correction factor of neck-duct interface, proposed by [10], is

given by:
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}
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r
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δi = r
{
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( r
a

)}
;
r

a
> 0.4, (9)

where r and a is the HR neck and the coupled main duct radius.

3 Periodic HR modeling

By applying a similar relation as presented in the Eq. (1), the main duct transfer matrix can be obtained as
[8]:

Td =

 cos(kLd) j ρc
Sd

sin(kLd)

j Sd

ρc sin(kLd) cos(kLd)

 , (10)

where Ld is the length of the duct before and after the HR.
Figure 2 shows the HR layout periodically distributed along a duct. It can be seen that the unit-cell is a

combination of three elements: one left-side duct, one HR, and one right-side duct.
From the Eqs. (6) and (10) the unit-cell transfer matrix for the periodic system can be obtained as:

Tcell = TdTHRTd =

 Ac Bc

Cc Dc

 . (11)
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Figure 2. Periodic Helmholtz resonators emphasizing the duct-HR unit-cell (red line).

Thus, the acoustic pressure and volume velocity at the left-end side and right-end side of the periodic cell are
given by:

 p0

U0

 = Tcell

 pl

Ul

 , (12)

Rewriting the Eq. (12) in compact form:

ql = Tcellqr, (13)

where qr = {pl Ul}T and ql = {p0 U0}T are the state vectors of the right-end and left-end side of the unit cell,
respectively.

Considering the consecutive unit cells n and n+ 1 (Fig. 2), and from the compatibility condition and conti-
nuity of volume velocity and acoustic pressure it has qn

r = qn+1
l . By replacing it in the Eq. 13 one has:

qn+1
l = Tcellq

n
l . (14)

By applying Bloch-Floquet periodic boundary condition to the HR-duct periodic system and simplifying an eigen-
problem is obtained as:

Tcellq = eµq, (15)

where eµ are the eigenvalues, q are the eigenvectors, and µ = −jkLcell is the attenuation constant. From this
eigenvalue/eigenvector problem it can be obtained the Bloch wavenumber and the corresponding Bloch wave
mode-shapes.

3.1 Transmission Loss (TL) and Forced Response (FRF)

From the unit-cell transfer matrix (Eq. 11), it is possible to calculate the transmission loss (TL) along the
duct [7] by:

TL = 20log10

∣∣∣∣∣Ac +
Sd
c Bc +

c
SdCc +Dc

2

∣∣∣∣∣ , (16)

and the forced response (FRF) as [11]:

pl
U0

=
ZHR

Ac +BcZHR
. (17)
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4 Numerical results

Numerical simulations of the HR-duct acoustic periodic system are performed using a TM code implemented
in MATLAB environment, and verified for some examples by FE calculated with COMSOL Multiphysics com-
mercial software. For all simulated results, the HR-duct geometry and the air properties are as shown in the Table
1. The cavity area of the HR is given by the difference between the total area HxW and the neck area of the HR.

Table 1. Numerical model geomery and property.

Geometry/Property Value

Main duct height Hd 0.2 m

Neck width wn 0.04 m

Neck length Ln 0.48 m

Side branch length H 0.2 m

Side branch height W 0.2 m

Air mass density ρ 1.2 kg/m3

Air wave velocity c 343 m/s

4.1 Transmission Loss (TL)

Figure 3 compares the transmission loss curves calculated for a unit-cell HR-duct system with the Equivalent-
HR calculated by TM (MATLAB) and FE (COMSOL), and also with the Coiling-HR calculated by FE (COM-
SOL). The results are calculated for a frequency band of DC-150 Hz with a discretization of 0.1 Hz. For the TLs

Figure 3. Comparison between TLs calculated TM and FE using Equivalent-HR and Coiling-HR models.

obtained with the Equivalent-HR it can be seen a good agreement between the results calculated by TM and FE,
with a TL peak around 91.0 Hz. For the Coiling-HR, the TL peak is shifted by 2.0 Hz (93.0 Hz) above that of
Equivalent-HR, showing a relative error of 3%. The wavelength is at least 19x longer than the length of the tube,
as shown by Wang et al. [2].

The differences between the Equivalent-HR and the Coiling-HR models are related to the tube winding inside
the cavity, as this geometry is not taken into account in the Equivalent-HR calculated by TM and FE. Also, there
are differences in amplitudes, which comes from the difference between the methods, since that in FE (COMSOL)
all types of waves are being considered, while in TM (MATLAB) only plane waves are considered.
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4.2 Dispersion diagram

Figure 4 shows a comparison between the dispersion diagrams calculated with Equivalent-HR model by
TM (MATLAB) and FE (COMSOL) with Equivalent- and Coiling-HR models. Note that the real part of

Figure 4. Dispersion diagram for a unit cell

non-dimensional Bloch wavenumber (ℜ{kcLcell}) are the propagating wave, while the imaginary part of non-
dimensional Bloch wavenumbrer (ℑ{kcLcell}) are the non-propagating waves (evanescent). Also, the FE (COM-
SOL) calculates only the real part of Bloch wavenumber, which as compared with the TM results in a good
agreement between all models. Two different types of bandgaps can be observed: the first type is located in the
frequency band close to 91 and 360 Hz, where the sound attenuation occurs due to the local resonance effect
provided by the HR. Note that the real part of non-dimensional Bloch wavenumber reaches a constant value of π
value (Bragg limit), then at the HR resonance frequency it drops abruptly for a constant value of zero. At the same
frequency band the corresponding negative imaginary part of Bloch wavenumber becomes different of zero with a
peak at the HR resonance frequency. The second type of bandgaps are located in the frequency bands of 170-180
Hz and 320-340 Hz and are due to Bragg scattering effect generated by periodicity.

Figure 5. Average T̄L (top plot) and FRF (bottom plot) calculate by TM for Coiling-HR metamaterial with
N = 1, 3, 5, 10 cells.
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4.3 Sound attenuation for periodic coiling-HR

In this section, the acoustic attenuation of a metamaterial using periodic coiling HR is evaluated for N =
1, 3, 5, 10 cells. Figure 5 shows the average T̄L = TL/N (top plot) and FRFs (bottom plot) calculate by TM. As
proposed by [12] the TL for infinite periodic HR cells (TLinf = 20log10(∥eµ∥)) is also presented. The results
demonstrate that as the number of cells increases the T̄L above the HR resonance frequency increases, but bellow
it decreases. In the frequency range of 81-89 Hz, unlike N = 1 cell that provides an attenuation of 1-9 dB, plane
waves propagate without any decay through the periodic resonators when N = ∞. However, in the frequency
range of 67-81 Hz and 92-104 Hz, as the number of resonators is increased, more noise attenuation is provided.

By considering a unitary volume velocity at the main duct input as the excitation, the acoustic pressure
response at the main duct output is obtained for N = 1, 3, 5, 10 unit-cells. The results demonstrate that as the
number of unit cells increases, the acoustic attenuation around the HR resonance frequency increases.

5 Conclusions

The use of space-coiled resonators brings advantages in dimensional terms compared to Helmholtz res-
onators, such as the use of small dimensions to attenuate noise with a long wavelength. To increase the range
of noise attenuation in a duct, HR were arranged periodically. Through the dispersion diagram it is observed two
types of bandgaps caused by the resonant frequency and the periodicity. As the number of resonators increases,
more noise attenuation is provided to the system in the frequency bands of 67-81 and 92-104 Hz bands.
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