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Abstract. Through the decades, periodic structures have been studied using different models and configurations, 

and recently, metamaterial design has emerged as a hot topic for research. The effect of creating pass and stop 

bands for this type of system considerably expands the possibility of applications. However, there is a knowledge 

gap regarding practical analysis, which relates attenuation gains with physical properties, such as structural mass. 

This work presents a design improvement to increase vibration attenuation and mass reduction for a periodic rod. 

Asymmetric cells are considered using solid and hollow configurations. Using the transfer matrix method, 

displacement transmissibility expressions are derived as a function of the internal diameter. Numerical simulations 

show that a structure with hollow cells results in a reduction of 24% in the minimum transmissibility and a 

reduction in mass of about 40%, compared to a similar structure with solid cells.  
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1  Introduction 

In vibration control problems, the transmission element between source and receiver is frequently modified. 

This can involve a periodic structure, which can be tuned so that there are frequency ranges in which wave 

propagation is significantly attenuated [1,2]. 

In the literature, there are numerous applications of periodic structures. A phonic crystal was applied to 

vehicle bodies to reduce the total vibration [3,4]. Vibration tests have demonstrated the potential use of periodic 

structures to satellite panels so that they can endure vibration loads during the rocket launch [5]. Numerical and 

experimental results based on both the spectral finite element method and the transfer matrix method showed 

improvement in the acoustic comfort of helicopter cabins employing periodic structures [6,7]. 

In any structure designed to attenuate vibration, there are design requirements and physical limitations. 

However, most studies involving periodic structures, focus on the characterisation of infinite structures, which can 

obscure additional effects. It has been demonstrated that finite periodic structures have wider attenuation bands 

greater than the stop band of an infinite structure, but for a large number of cells these two frequency bands 

converge [8,9]. There is scant literature regarding practical analysis in this context, but some work has considered 

the problem of minimising the total mass, but without considering the arrangement of a periodic structure [10]. 

This aim of this paper is to investigate whether the geometry of a periodic structure can be arranged, such 

that mass can be removed from a structure, but the vibration isolation performance is improved. To this end a rod-

like periodic structure is considered and the transfer matrix approach employed to determine the vibration 

transmission through the structure, as described in [11,12]. 
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2  Problem statement 

A finite array of periodic rods is constructed from the successive repetition of N  cells, as shown in Fig. 1. 

The vibration transmission though the structure can be quantified by the ratio of the displacement ratio at the right-

end side of the last cell 
 N

RU  to the displacement at the left-end side of the first cell 
 1
LU . This is called the 

displacement transmissibility. In the study of a finite periodic array of rods, it has been demonstrated that it is 

advantageous to use asymmetric rather than symmetric cells [12]. Moreover, it has been shown that it is important 

to orientate the cells so that the thinner rod section within a cell is closer to the source (the left-hand end in this 

case).  

 

 
Figure 1. Finite structure consisting of N  asymmetric periodic cells. 

 

Figure 2 shows two asymmetric cells considered in this paper composed of circular sections, called sub-cell 

a and sub-cell b, and has properties of Young’s modulus a bE E E= = , density a b  = =  and cross-section area 

aS  and bS , with external diameters respectively, a b and d d . The difference between the structures in Fig. 2(a) 

and Fig. 2(b), is that the first is a solid cell, and the second is a hollow cell with an internal diameter intd . As the 

greatest reduction in the transmissibility for the lowest attenuation band, occurs when the sub-cells lengths are 

equal [12], it is assumed that a bl l l= = . The objective of this paper is to evaluate the performance of both types 

of cells in terms of vibration transmission reduction and to compare the advantages of each structure from a 

practical point of view. 
 

 
Figure 2. Drawings for a stepped rod cell. (a) solid, int 0d = ; (b) hollow, int 0d  . (i) section views (ii)isometric 

views 

Considering Fig. 1, the relationship between the forces and normalised displacements at each end of a 

structure with N  cells is given by, 
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where k
c


=  is the longitudinal wavenumber, where 

E
c


=  is the phase velocity; cellT  is the cell transfer matrix, 

given by the product of the individual transfer matrices of each sub-cell 
( ) ( )

( ) ( )a

cos sin

sin cos

kl kl

kl kl

 − 
=  
 

T  and 

( ) ( )

( ) ( )b 1

cos sin

sin cos

kl kl

kl kl



 −

 − 
=  
 

T , in which b

a

cross-sectional area of b

cross-sectional area of a

S

S
 = =  is the area ratio for a generic cell,  

thus  
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The displacement transmissibility for a structure with N cells is given by  
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where 
2,2T  is the element 2,2 of the inverse of the transfer matrix of the complete finite array 

1
N

cell

−

  T . For a 

single cell [12], 
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The area ratio can be written as a function of the diameters. For the solid cell in Fig. 2(a) this is given by  

 

 
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and for the hollow cell in Fig. 2(b) by 
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Note that the maximum internal diameter is limited such that int ad d . Thus, it is convenient to write 2  in 

terms of int

a

d

d
 = , which has to be less than unity, so that  
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2 21
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−
=

−
. (7) 

Equation (7) shows the influence of the internal diameter on the area ratio, having as reference the solid 

structure. 

3  Results and discussions 

To illustrate the effect of using a hollow element on vibration transmission through a periodic structure, the 

displacement transmissibility for a single cell and for a structure with 3 cells is plotted in Fig. 3 as a function of 

l  , where   is wavelength and is related to the wavenumber by 2k  = . A loss factor of 0.01 =  is assumed.  

Note that a hollow element causes a reduction in the transmissibility, with a minimum ( )min
T  highlighted 

by the black squares, and an increase in the attenuation band, highlighted by the dashed green lines. The attenuation 

band is defined by the region where the transmissibility is less than unity. This is called the bandwidth (BW). This 

region is a maximum for a single cell and reduces as the number of cells increases, finally coinciding with the stop 

band for an infinite structure when N  is very large. The reduction in the attenuation band between one and three 

cells can be seen by comparing Figs. 3(a) and Fig. 3(b). The green circles give the lower and upper bounds. The 

improved attenuation for the hollow structure observed in Fig. 3 is due to the increase in the area ratio of the 

structure.  
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Figure 3. Displacement transmissibility for structures with 1 1.5 = , solid structure, thick grey line; and hollow 

structure with 0.7 = , thin blue line. (a) 1N =  and (b) 3N = . 
 

The minimum transmissibility occurs at 
min

1

4

l


= , and at this frequency Eq. (5) become  

 
min

1
T


= . (8) 

When this condition is applied in Eq. (2), the off-diagonal terms in the transfer matrix of a single cell are 0. 

Thus, at this frequency there is no cross coupling between the displacements and the force, and the minimum 

transmissibility for N cells is given by [12], 

 

 

 1

min

1
N

R

N

L

U

U 
= , (9) 

or in terms of maximum attenuation in dB, 

 ( )1020 logA N= . (10) 

Another significant effect of using hollow cells is mass reduction. The mass for a solid element is given by  
   ( )   ( )Solid Solid Solid

1 a b a 11m l S S lS  = + = +  and 
   ( )   ( )Hollow Hollow Hollow

2 a b a 21m l S S lS  = + = +  so the mass 

reduction can be expressed as, 

 
2

2

1 1

2
1

1

m

m




− =

+
. (11) 

The effect of reducing the mass (or increasing the internal diameter of the hollow cell) on the minimum 

transmissibility and bandwidth for structures with different numbers of cells is shown in Fig. 4. Again, the increase 

in the attenuation band is observed, as an effect of the increase in  , and the reduction in the minimum 

transmissibility and bandwidth, due to the increase in N. The black dotted line highlights the points where 0.7 =

, as in the blue line in Fig. 3, note that the mass reduction is approximately 40%. The results shown in Figs. 3 and 

4, consider 1 1.5 =  as the reference area ratio. Figs. 5 and 6 show the effect on the bandwidth, and on mass 

reduction and maximum vibration attenuation of a single cell as a function of 1 , for different values of  .  
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Figure 4. Effect of reducing mass by increasing the internal diameter of the hollow structure on (a) the 

bandwidth; and (b) minimum transmissibility, considering 1N = , thick grey line; 3N =  thin blue line, and 

5N =  thin red dash-dot line. 

 

 
Figure 5. Lower and upper bands of the attenuation band for a single cell, as a function of solid cell area ratio, 

for 0.1 = , thin black line; 0.3 = , thin blue dash-dot line; 0.5 = , thin red dash line; 0.7 = , thick solid 

green line; and 0.9 = , thick yellow dash-dot line. 
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Figure 6.  The effect on mass reduction and maximum vibration attenuation as function of the solid single cell 

area ratio for 0.1 = , thin black line; 0.3 = , thin blue dash-dot line; 0.5 = , thin red dash line; 0.7 = , 

thick solid green line; and 0.9 = , thick yellow dash-dot line. (a) Mass reduction; (b) maximum attenuation. 

 

Figures 5 and 6 can be used to predict the effects in terms of attenuation and mass reduction of a hollow cell 

compared to a solid cell. Note that the black dotted lines mark the mass reduction and maximum attenuation 

respectively, for a cell whose internal diameter is int a0.7d d=  and 1 1.5 = , in a condition equivalent to the plots 

shown in Fig. 3. Equations (11) and (13) show that, in addition to the considerable mass reduction, the hollow cell 

has a maximum attenuation of approximately 5.9 dB, while the solid cell is approximately 3.5 dB, which 

corresponds to a reduction in minimum transmissibility of 24%. The increase in bandwidth is also evident in Fig. 

4(a) and Fig. 5. Thus, instead of increasing the number of cells to achieve a certain vibration attenuation 

performance, another option is to change the area ratio by using hollow cells, provided that the strength 

requirements are not compromised.  

4  Conclusions 

A study on asymmetric periodic cells has been considered in this work, with solid and hollow rod 

configurations. From the transfer matrix method, expressions have been developed as a function of the internal 

diameter of the hollow rod. They have been used to study the vibration attenuation and mass reduction achievable 

in a structure consisting of a finite array of rods. The results showed that the application of hollow rather than solid 

periodic rods results in both an increase in the vibration attenuation and a reduction in mass. For the range of 

parameters used in the study, the minimum transmissibility was reduced by approximately 24%, and the bandwidth 

in which attenuation occurs increased by 33%, compared to a solid cell. There is also a significant reduction in the 

structural mass, of about 40%.  
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