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Abstract. This paper analyzes a strategy for tunable, broadband vibration attenuation in electro mechanics alone-

dimension guided wave coupled with shunted piezoelectric. The piezo patches are in periodic arrays over the beam. 

They are connected in shunt circuits that resonate at distinct neighbouring frequencies, creating a tunable rainbow 

trap capable of attenuating vibration with broadband characteristics. Based on the effect of electrical energy 

dissipation, the shunt circuit connection is applied to provide damping in the system vibration. An efficient method 

to model and analyze the dynamic of structures is the spectral elements method (SEM). Although, a single spectral 

element can model geometrically uniform members. Therefore, it can reduce the total number significantly in the 

mesh. Results show the efficiency in attenuating vibrations over a broad frequency range can be obtained by tuning 

different shunt circuits to resonate at different frequencies, which create a tunable rainbow trap. 
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1  Introduction 

Control and attenuation of vibrations is an important issue, and it is receiving more and more attention over 

the past years. Using piezoelectric shunts, a passive technique for vibration control of flexible structures has grown 

its application in vibration attenuation and control. In the passive control technique, the only external element to 

be used is a passive electrical network that is directly connected to the electrodes of the piezoelectric circuit [11]. 

This technique was first introduced by Forward [6] who used piezoelectric elements with inductive shunts to 

reduce the wave propagation of a membrane mirror [2]. 

Since the piezoelectric material can convert mechanical energy into electrical energy and vice versa, the 

shunt circuit known to dissipate this energy is largely applied on wave attenuation and vibration control [10]. The 

resistive inductive (RL) circuits can generate localized vibration attenuation. By connecting an RL circuit with a 

capacitor and it is obtained a resonant RLC circuit, which behaves as an electrical dynamic damper that can be 

tuned by adjusting the circuit parameters [3, 9,10]. Hagood and Von Flotow [2] contributed to the first analytical 

formulation for passive shunt implementation, demonstrating how a piezoelectric patch shunted through a resistive 

inductive (RL) circuit acts as a vibration absorber when adjusted for the resonance frequency of the structure. 

Airoldi and Ruzzene [1] implemented a periodic structure with independent RL shunt circuits to control wave 

propagation, this work demonstrated promising results in terms of locally resonant bandgap generation. Cardella 

et al.[15] presented the piezo patch configuration capable of attenuating vibrations over a broad frequency range 

can be obtained by tuning different RL circuits to resonate at different frequencies, thus realizing a tunable rainbow 

trap for elastic wave manipulation. 

Regarding the idea proposed by Cardella et al.[15], this paper discusses the development of an SEM numerical 

model of a unimorph beam structure, represented by a beam coupled with a piezo layer, aiming to study the tunable 

rainbow trap configuration used to manipulate the vibration attenuation. Numerical results used the rainbow trap 

technique using an RLC shunt circuit to achieve efficiency in attenuating vibrations over a broad frequency range. 

The general impedance relationships of the circuit give the interactions between the structure and the shunt circuit. 

Results show the efficiency of the technique and the rainbow kind attenuation in the beam's vibration.  
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2  Spectral Element Theoretical Analysis 

Dynamic models of smart structures connected with circuits shunts are developed based on Modal 

Analysis (MA), Finite Element Method (FEM), Wave Finite Element (WFE), among other techniques[8]. 

However, these methods require a certain mathematical complexity, and some need a large number of 

discretization's expressing precision in the system's responses. The Spectral Element Method (SEM) is an 

alternative to other methods since its formulation deals with a model that relates forces and displacements spectral 

nodal based on the analytical solution of the wave [4,7]. Therefore, SEM does not need a discretization with large 

numbers of elements. The smart beam structure model of Fig. 1 used the piezo patched couplings in a periodical 

order.  

 
 

Figure 1. Smart material beam.  

 

The smart beam represented in Figure 1 is composed of joints of elements of the type beam-piezo-shunt and 

beam also called unimorph beam. The structure presents homogeneous density and thickness, perfect continuity 

at the interfaces, small vibration amplitudes and linear elasticity. The variables of transverse displacement, axial 

displacement and rotation are represented by the terms 𝑤(𝑥, 𝑡), 𝑢(𝑥, 𝑡) and 𝜃(𝑥, 𝑡). The relations of bending 

moments, shear force and axial force are represented by 𝑀, 𝑉 and 𝑁. 

2.1 Spectral Element Modeling of the beam metamaterial with shunted circuit 

The beams are structural elements that have the dimension of the cross-section less than the total length. The 

mathematical model for the Euler-Bernoulli beam considering the dimensions uniform prismatic has the following 

equation of motion, 

 

    𝐸𝐼 
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
= 𝜌𝐴

𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2
+ 𝑓(𝑥, 𝑡) (1) 

 

where 𝐸, 𝜌, 𝐴 and 𝐼 are Young's modulus, mass density, transverse area and moment of inertia, respectively. 

Assuming that the transverse displacement and rotation can be expressed as 

 

   {
𝑤(𝑥, 𝑡)
𝜃(𝑥, 𝑡)

} =  
1

𝑁
∑ {

𝑊(𝑥, 𝜔𝑛)
Θ(𝑥, 𝜔𝑛)

}

𝑁−1

𝑛=0

𝑒𝑖𝜔𝑛𝑡 (2) 

 

By considering the external force 𝑓(𝑥, 𝑡) = 0 and applying the spectral terms of Eq. (2) in Eq. (1), we obtained 

the equation of motion of the beam in the frequency domain, expressed by 

 

    𝐸𝐼 
𝜕4𝑊(𝑥,𝜔𝑛)

𝜕𝑥4
−𝜔2𝜌𝐴𝑊(𝑥, 𝜔𝑛) = 0 (3) 

 

The general solution is assumed of type 𝑊 = 𝑎𝑒−𝑖𝑘(𝜔)𝑥 and its solution represents the following dispersion 

relation 𝑘4 − 𝑘𝐹
4 = 0, where 𝑘𝐹 does the following relation define the wavenumber as 

     𝑘𝐹 = √𝜔 (
𝜌𝐴

𝐸𝐼
)
1/4

 (4) 

        Therefore, the general solution under wave propagation base is 

 

    𝑤 = 𝑎1𝑒
−𝑖𝑘𝐹𝑥 + 𝑎2𝑒

−𝑘𝐹𝑥 + 𝑎3𝑒
𝑖𝑘𝐹𝑥 + 𝑎4𝑒

𝑘𝐹𝑥 = 𝒆(𝑥, 𝜔)𝒂 (5) 

 

where 𝒆(𝑥, 𝜔) = [𝑒−𝑖𝑘𝐹𝑥 , 𝑒−𝑘𝐹𝑥, 𝑒𝑖𝑘𝐹𝑥, 𝑒𝑘𝐹𝑥],  and   𝒂 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}
𝑻. For finite beam element of length 

𝐿 with defined nodes on the contours 𝑥 = 0 and 𝑥 = 𝐿, we have that the transverse displacement and rotation can 

be related to the wave equation, 
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𝒅 = {

𝑊1

𝛩1
𝑊2

𝛩2

} =

{
 

 
𝒆(0, 𝜔)

𝒆′(0,𝜔)
𝒆(𝐿, 𝜔)

𝒆′(𝐿, 𝜔)}
 

 
= 𝑯𝐵(𝜔)𝒂, (6) 

 

where          𝑯𝐵(𝜔) = [

1 1 1            1
−𝑖𝑘𝐹 −𝑘𝐹 𝑖𝑘𝐹        𝑘𝐹
𝑒−𝑖𝑘𝐹𝐿

−𝑖𝑘𝐹𝑒
−𝑖𝑘𝐹𝐿

𝑒−𝑘𝐹𝐿

−𝑘𝐹𝑒
−𝑘𝐹𝐿

𝑒𝑖𝑘𝐹𝐿

𝑖𝑘𝐹𝑒
𝑖𝑘𝐹𝐿

𝑒𝑘𝐹𝐿

𝑘𝐹𝑒
𝑘𝐹𝐿

],   

 

One can express the components of force and moment as 

 

𝒇𝒄 = {

𝑄1
𝑀1

𝑄2
𝑀2

} = {

−𝑄(0)

−𝑀(0)
𝑄(𝐿)

𝑀(𝐿)

} = 𝑮𝐵(𝜔)𝒂, (7) 

 

where  (𝑥) = −𝐸𝐼𝑊′′′(𝑥),  𝑀(𝑥) = 𝐸𝐼𝑊′′(𝑥), and  
 

𝑮𝐵(𝜔) =

[
 
 
 
 
−𝑖𝑘𝐹

3 𝑖𝑘𝐹
3 𝑘𝐹

3            −𝑘𝐹
3

−𝑖𝑘𝐹
2 𝑖𝑘𝐹

2 𝑘𝐹
2        −𝑘𝐹

2

𝑖𝑘𝐹
3𝑒−𝑖𝑘𝐹𝐿

𝑘𝐹
2𝑒−𝑖𝑘𝐹𝐿

−𝑖𝑘𝐹
3𝑒𝑖𝑘𝐹𝐿

−𝑘𝐹
2𝑒𝑖𝑘𝐹𝐿

−𝑘𝐹
3𝑒𝑘𝐹𝐿

𝑖𝑘𝐹
2𝑒𝑘𝐹𝐿

𝑘𝐹
3𝑒−𝑘𝐹𝐿

−𝑖𝑘𝐹
2𝑒−𝑘𝐹𝐿]

 
 
 
 

,  

 

By relating Eq. (6) with Eq. (7), it is possible to establish the relations between displacement and force, 

 

𝑺𝐵(𝜔) = 𝑮𝐵(𝜔)𝑯𝐵
−1(𝜔), (8) 

 

where 𝑺𝐵(𝜔) is the dynamic stiffness matrix, also known as the spectral stiffness matrix for the Euler-Bernoulli 

beam. 

2.2 Spectral Element analysis of the Beam-piezo element 

The linear constitutive relationships used to represent electromechanical behaviour one-dimension of the 

piezoelectric material are expressed with, 

 

{
𝜎
𝛦𝑐
} = [

𝐶11
𝐷 −ℎ31

−ℎ31 𝛽33
𝑆 ] {

𝜖
𝐷3
}, (9) 

 

where 𝜎 is the mechanical stress, 𝜖 the mechanical strain, 𝐷3 is the electrical displacement (charge/area in the 

vertical beam direction), 𝛽33
𝑆  the dielectric constant, 𝐶11

𝐷  is the elastic modulus, 𝛦𝑐 is the dielectric constant, and 

ℎ31 is the piezoelectric constant. The formulation of the spectral element starts with the exact solution of the 

equation of the motion. Therefore, to build the motion equation of a piezo coupled beam element, Lee [7] uses the 

relations of kinetic energy, potential and virtual work to apply Hamilton's principle and generate the following 

motion of equation,  

 

𝐸𝐼𝑤′′′′ + 𝜌𝐴�̈� + 𝑐𝐴�̇� = −𝛼�̈�𝑏
′ + 𝛽𝑢′′′ + 𝛾�̈�′′ + 𝑐1�̇�

′′ − 𝑐4�̇�𝑏
′ + 𝐹𝑤′′ + 𝑝(𝑥, 𝑡) 

(10) 
𝐸𝐴𝑢𝑏

′′ − 𝜌𝐴�̈�𝑏 − 𝑐𝐴�̇�𝑏 = −𝛼�̈�′ + 𝛽𝑤′′′ − 𝑐4�̇�
′ − 𝜏(𝑥, 𝑡), 

 

𝐸𝐴 = 𝐸𝑏𝐴𝑏 + 𝐸𝑝𝐴𝑝,                     𝐸𝐼 = 𝐸𝑏𝐼𝑏 + 𝐸𝑝𝐼𝑝 + (1/4)𝐸𝑝𝐴𝑝ℎ
2,               𝑐1 = (1/4)𝑐𝑝𝐴𝑝ℎ

2, 

 𝜌𝐴 = 𝜌𝑏𝐴𝑏 + 𝜌𝑝𝐴𝑝,                   𝛼 = (1/2)𝜌𝑝𝐴𝑝ℎ,                                              𝑐4 = (1/2)𝑐𝑝𝐴𝑝ℎ, 
𝛽 = (1/2)𝐸𝑝𝐴𝑝ℎ,                          𝛾 = (1/4)𝜌𝑝𝐴𝑝ℎ

2,                                            𝑐𝐴 = 𝑐𝑏𝐴𝑏 + 𝑐𝑝𝐴𝑝, 
 

where subscripts 𝑏 e 𝑝 represent the beam and piezo elements, respectively. The terms 𝐸, 𝜌, 𝑐, 𝐴 and 𝐼 are Young's 

modulus, mass density, viscous damping coefficient, transverse area and moment of inertia, respectively. The sum 

of the thicknesses of the beam and the piezo is represented by ℎ; 𝐹 is the constant axial tensile force, 𝑝(𝑥, 𝑡) and 

𝜏(𝑥, 𝑡) are possible external forces applied along the beam. For simplification of notation, spatial partial derivatives 
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are represented by ( ′ ), while partial time derivatives are characterized by ( ˙ ). The structural damping of each 

element can be readily taken into account using the complex modulus of elasticity as 𝐸𝑏
∗ = 𝐸𝑏(1 + 𝑖𝜂𝑏),   𝐸𝑝

∗ =

𝐶11
𝐷∗ − ℎ31

2 𝛽33
𝑆−1,     𝐶11

𝐷∗ = 𝐶11
𝐷 (1 + 𝑖𝜂𝑝). The following spectral forms are assumed 

   {

𝑤(𝑥, 𝑡)

𝑢(𝑥, 𝑡)
𝑝(𝑥, 𝑡)

𝜏(𝑥, 𝑡)

} =  
1

𝑁
∑{

𝑊(𝑥, 𝜔𝑛)

𝑈(𝑥, 𝜔𝑛)
𝑃(𝑥, 𝜔𝑛)

𝛵(𝑥, 𝜔𝑛)

}

𝑁−1

𝑛=0

 (11) 

 

By applying the spectral terms of Eq. (11) in Eq. (10), we obtained the equation of motion in the frequency 

domain, expressed by 

 

𝐸𝐼𝑊′′′′ − 𝜔2𝜌𝐴𝑊 + 𝑖𝜔𝑐𝐴𝑊 = 𝜔2𝛼𝑈′ + 𝛽𝑈′′′ − 𝜔2𝛾𝑊′′ + 𝑖𝜔𝑐1𝑊
′′ − 𝑖𝜔𝑐4𝑈′ + 𝐹𝑊

′′ + 𝑃(𝑥) 
(12) 

𝐸𝐴𝑈′′ + 𝜔2𝜌𝐴𝑈 − 𝑖𝜔𝑐𝐴𝑈 = 𝜔2𝛼𝑊′ + 𝛽𝑊′′′ − 𝑖𝜔𝑐4𝑊
′ − 𝛵(𝑥), 

 

The general solution is assumed of type 𝑊(𝑥) =  ∑ (𝑎𝑗𝑒
−𝑖𝑘𝑗𝑥)6

𝑖=1 = 𝒆(𝑥, 𝜔)𝒂 ,    𝑈(𝑥) =  ∑ (𝑟𝑗𝑎𝑗𝑒
−𝑖𝑘𝑗𝑥)6

𝑖=1 =

𝒆(𝑥, 𝜔)𝑹𝒂 , where 𝒆(𝑥, 𝜔) = [𝑒−𝑖𝑘1𝑥   𝑒−𝑖𝑘2𝑥  𝑒−𝑖𝑘3𝑥    𝑒−𝑖𝑘4𝑥   𝑒−𝑖𝑘5𝑥    𝑒−𝑖𝑘6𝑥], 𝒂 =  {𝑎1  𝑎2  𝑎3  𝑎4  𝑎5  𝑎6}
𝑇 , 

and 

     𝑹 =  𝑑𝑖𝑎𝑔(𝑟𝑗) = 𝑑𝑖𝑎𝑔 [
−𝜔𝑘𝑗𝑐4 − 𝑖𝜔

2𝑘𝑗𝛼 + 𝑖𝑘𝑗
3𝛽

−𝑘𝑗
2𝐸𝐴 + 𝜔2𝜌𝐴 − 𝑖𝜔𝑐𝐴

]  

 

From the general solution applied to the equation of motion, a characteristic equation with an eigenvalue 

problem is obtained, and the wavenumbers 𝑘𝑗  (𝑗 = 1,2. . ,6) are determined by estimating the roots of the following 

expression 

𝑏1𝑘
6 + 𝑏2𝑘

4 + 𝑏3𝑘
2 + 𝑏4 = 0, (13) 

 

𝑏1 = 𝛽
2 − 𝐸𝐴𝐸𝐼, 

 
𝑏2 = 𝜔

2(𝐸𝐴𝛾 + 𝐸𝐼𝜌𝐴 − 2𝛼𝛽) − 𝑖𝜔(𝐸𝐼𝑐𝐴 + 𝐸𝐴𝑐1 − 2𝛽𝑐4) − 𝐸𝐴𝐹, 
𝑏3 = 𝜔

4(𝛼2 − 𝛾𝜌𝐴) + 𝑖𝜔3(𝜌𝐴𝑐1 + 𝛾𝑐𝐴 − 2𝛼𝑐4) + 𝜔
2(𝐸𝐴𝜌𝐴 + 𝑐𝐴𝑐1 + 𝐹𝜌𝐴 − 𝑐4

2) − 𝑖𝜔𝑐𝐴(𝐸𝐴 + 𝐹), 
𝑏4 = −𝜌𝐴

2𝜔4 + 2𝑖𝜔3𝜌𝐴𝑐𝐴 + 𝜔2𝑐𝐴2. 
 

Relating the spectral nodal shifts in terms of 𝒂 with the vector 𝒅, we obtain 𝒅 = 𝑯𝐵𝑃(𝜔)𝒂 , where 

 

𝑯𝐵𝑃(𝜔) =

[
 
 
 
 
 
 

𝑟1 𝑟2 𝑟3                  𝑟4                    𝑟5                  𝑟6     
1 1 1                    1                 1                  1      

−𝑖𝑘1
𝑒−𝑖𝑘1𝐿𝑟1
𝑒−𝑖𝑘1𝐿

−𝑖𝑘1𝑒
−𝑖𝑘1𝐿

−𝑖𝑘2
𝑒−𝑖𝑘2𝐿𝑟2
𝑒−𝑖𝑘2𝐿

−𝑖𝑘2𝑒
−𝑖𝑘2𝐿

−𝑖𝑘3            −𝑖𝑘4            −𝑖𝑘5            −𝑖𝑘6     

𝑒−𝑖𝑘3𝐿𝑟3    𝑒−𝑖𝑘4𝐿𝑟4    𝑒−𝑖𝑘5𝐿𝑟5     𝑒−𝑖𝑘6𝐿𝑟6
𝑒−𝑖𝑘3𝐿          𝑒−𝑖𝑘4𝐿          𝑒−𝑖𝑘5𝐿         𝑒−𝑖𝑘6𝐿

−𝑖𝑘3𝑒
−𝑖𝑘3𝐿 −𝑖𝑘4𝑒

−𝑖𝑘4𝐿 −𝑖𝑘5𝑒
−𝑖𝑘5𝐿 −𝑖𝑘6𝑒

−𝑖𝑘6𝐿]
 
 
 
 
 
 

,  

 

Assuming general solutions of the type     𝑊(𝑥,𝜔) = 𝑵𝑤(𝑥, 𝜔)𝑯𝐵𝑃
−1(𝜔),      𝑈(𝑥, 𝜔) = 𝑵𝑢(𝑥, 𝜔)𝒅, where the 

shape functions are given by   𝑵𝑤(𝑥, 𝜔) =  𝒆(𝑥, 𝜔)𝑯𝐵𝑃
−1(𝜔),  𝑵𝑢(𝑥, 𝜔) =  𝒆(𝑥, 𝜔)𝑹𝑯𝐵𝑃

−1(𝜔).  Relating the general 

solution to the equation of motion and applying Hamilton's principle, we arrive at the following spectral element 

equation 

𝑺𝐵𝑃(𝜔)𝒅 = 𝒇(𝜔), (14) 

 

and replacing the dynamic shape functions into Eq. (14) gives 

𝑺𝐵𝑃(𝜔) = 𝑯𝐵𝑃
−𝑇(𝜔)𝑫(𝜔)𝑯𝐵𝑃

−1(𝜔), (15) 

 

where 

 

𝑫(𝜔) = −𝐸𝐴𝑹𝑲𝑬𝑲𝑹 + 𝐸𝐼𝑲𝟐𝑬𝑲𝟐 − 𝑖𝛽(𝑲𝟐𝑬𝑲𝑹 + 𝑹𝑲𝑬𝑲𝟐) − 𝜔2[𝜌𝐴(𝑬 + 𝑹𝑬𝑹) +
𝑖𝛼(𝑲𝑬𝑹 + 𝑹𝑬𝑲) − 𝛾𝐾𝐸𝐾] + 𝑖𝜔[𝑐𝐴(𝑬 + 𝑹𝑬𝑹) − 𝑐1𝑲𝑬𝑲 + 𝑖𝑐4(𝑲𝑬𝑹 + 𝑹𝑬𝑲)] − 𝐹𝑹𝑬𝑹, 

 

 

with         𝑲 = 𝑑𝑖𝑎𝑔[𝑘𝑗],                    𝑲
𝟐 = 𝑑𝑖𝑎𝑔[𝑘𝑗

2],                     𝑬(𝜔) = ∫ 𝒆𝑇(𝑥, 𝜔)𝒆(𝑥,𝜔)𝑑𝑥
𝐿

0
,  
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2.3 Spectral element of shunt control 

The mathematical representation of connecting an electrical shunt circuit to a piezoelectric represents the 

energy relation with mechanical deformation. The equation of beam-piezo movement with electrical shunt circuit 

is given by 

 

𝐸𝐼𝑤′′′′ + 𝜌𝐴�̈� + 𝑐𝐴�̇� + 𝛤𝑉 = −𝛼�̈�𝑏
′ + 𝛽𝑢′′′ + 𝛾�̈�′′ + 𝑐1�̇�

′′ − 𝑐4�̇�𝑏
′ + 𝐹𝑤′′ + 𝑝(𝑥, 𝑡) 

(16) 𝐸𝐴𝑢𝑏
′′ − 𝜌𝐴�̈�𝑏 − 𝑐𝐴�̇�𝑏 + 𝛤𝑉 = −𝛼�̈�

′ + 𝛽𝑤′′′ − 𝑐4�̇�
′ − 𝜏(𝑥, 𝑡), 

𝐸𝛤�̇� + 𝐶𝑝
𝑇�̇� = 𝐼, 

 

where 𝐼 is current, 𝑉 is the voltage, 𝐶𝑝
𝑇 is the piezoelectric capacitance, 𝛤 is the coupling term, defined by the 

following relationships 

 

𝑉 = −𝑍𝑒𝑞𝐼,                    𝐶𝑝
𝑇 = 𝐴(𝐶11

𝐷 − ℎ31
2 /𝛽33

𝑆 ),                    𝛤 = 𝐴(𝐶11
𝐷 − ℎ31

2 /𝛽33
𝑆 )/𝑙 (17) 

 

where 𝑍𝑒𝑞  is the electrical impedance of the shunt circuit. The resonant type electrical shunt circuit with resistance 

and inductance connected in series, the following impedance is generated 

 

    𝑍𝑒𝑞 =
𝑅 + 𝑖𝜔𝐿

(1 − 𝜔2𝐿𝐶𝑝
𝑇) + 𝑖𝜔𝑅𝐶𝑝

𝑇
 

(18) 

 

Equation (16) can be particularized to a harmonic motion and converted to the frequency domain. Thus, the 

corresponding harmonic motion assumption for generalized force and current is given by 

e 

𝑺𝐵𝑃(𝜔)𝒅 − 𝑺𝑆𝐻(𝜔)𝑉(𝜔) = 𝒇(𝜔), (19) 
𝑖𝜔𝑺𝑆𝐻(𝜔)𝒅 + 𝑖𝜔 𝐶𝑝𝑉(𝜔) = 𝐼(𝜔), 

 

Rearranging the equation of motion in terms of the piezo-beam and shunt circuit spectral element matrices, one 

can obtain 
[𝑺𝐵𝑃(𝜔) + 𝑺𝑆𝐻(𝜔)]𝒅 = 𝒇(𝜔), (20) 

where     𝑺𝑠ℎ(𝜔) = [𝑵𝑒(𝑥0, 𝜔) 0 −𝑴𝑒(𝑥0, 𝜔) −𝑵𝑒(𝑥0, 𝜔) 0 𝑴𝑒(𝑥0, 𝜔)]
𝑇,  

𝑵𝑒 =
𝑘31
2 𝑖𝜔𝑍𝑒𝑞𝑏𝑑31𝐸𝑝

1 + 𝑖𝜔𝐶𝑝
𝑇𝑍𝑒𝑞

, 𝑴𝑒 =
𝑘31
2 𝑖𝜔𝑍𝑒𝑞ℎ𝑏𝑑31𝐸𝑝

2 + 2𝑖𝜔𝐶𝑝
𝑇𝑍𝑒𝑞

  

 

Once the matrices of the spectral elements 𝑺𝐵(𝜔), 𝑺𝐵𝑃(𝜔) and 𝑺𝑆𝐻(𝜔) are defined, it is possible to obtain the 

global matrix by assembling the elements. This procedure is similar to the one used in the Finite Element Method. 

Therefore, the global matrix can be written so that 𝑺𝑔(𝜔)𝒅𝑔(𝜔) = 𝒇𝑔(𝜔), where the subscript 𝑔 indicates the 

global components.  

3  Numerical analysis 

The properties and geometries for the beam and the piezoelectric layer followed the work presented by 

[12,13,14]. The values are Young's modulus of 𝐸𝑏 = 71 GPa, the density of 𝜌𝑏 = 2700 kg/m
3, the width of 𝑏𝑏 =

12.7 mm, and a thickness of ℎ𝑏 = 2.286 mm. The piezo material and geometrical properties are Young's modulus 

of 𝐸𝑝 = 64.9 GPa, the density of 𝜌𝑝 = 7600 𝑘𝑔/𝑚
3, width of 𝑏𝑝 = 12.7 mm, and thickness of ℎ𝑝 = 0.762 mm. 

Piezoelectric constant is 𝑑31 = −175 𝑚/𝑉 × 10
−12, the dielectric constant of 𝛽33

𝑆 = −350 𝑚/𝑉 × 10−12, 

coupling coefficient 𝑘31 = 0.31, and stiffness of 𝐶𝑝
𝑇 = 200 𝐺𝑃𝑎. The total length of the smart structure is 𝐿𝑠 =

0.261 m. The simulation was performed in MATLAB software, presenting a series resistive-inductive shunt circuit 

configuration with values of resistance 𝑅 = 33 𝛺 and inductance 𝐿 = 0.1516 𝐻.  
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Figure 2. Receptance response of the beam in short-circuited obtained at both beam ends. 

 

Figure 2 shows the receptance response of the beam in short-circuited obtained at both beam’s ends due 

to a unitary force applied at the left-hand-side beam edge. For the rainbow circuit configuration, seven frequencies 

are chosen between 340Hz and 580Hz and each shunt circuit is connected to the piezo sensors tuned at a specific 

frequency. The colours of a rainbow represent each tuned frequency so that the RED (R) is the tunned frequency 

at 𝑓 = 400 𝐻𝑧, the ORANGE (O) at 𝑓 = 425 𝐻𝑧, the YELLOW (Y) at 𝑓 = 450 𝐻𝑧, the GREEN (G) at 𝑓 =

475 𝐻𝑧, the BLUE (B) at 𝑓 = 500 𝐻𝑧, the NAVY (N) at 𝑓 = 525 𝐻𝑧 and the VIOLET (V) at 𝑓 = 550 𝐻𝑧.  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 3. Rainbow technique implementation in the FRF response second mode shape: (a) Zoom view of the 

second resonance in the short-circuited configuration; (b)-(h) Zoom view of the second resonance after activating 

each shunt (ROYGBNV) sequentially; (i) final spectrum broadband attenuation obtained when all shunts are active 

in solid line compared to the short-circuited configuration in dashed line. 
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Figure 3(a) shows a zoon view of the receptance FRF response in the short-circuiting configuration in a 

frequency range of 350 to 560 Hz In this configuration the beam are resonating without control. Figure 3(b-h) 

shows the FRF zoom within each circuit shunt (ROYGBNV)  in action one by one as illustrated by the colour 

lines. The vertical lines indicate the tuned resonant frequencies of each shunt circuit to operate. As we advance in 

the sequence of activation of the circuits the shunted patches progressively dissipated the vibration in that 

frequency range, until all shunts are activated and it achieved the maximum energy dissipation. Figure 3(i) allows 

visualizing fully the broadband vibration attenuation capability of the rainbow trap configuration. 

4  Conclusions 

In this article, we explore the functionality of the rainbow trap usage in control and attenuation of 

vibration in a beam using piezoelectrics sensors connected to shunt circuits. One uses the SEM for the numerical 

implementation. The results illustrate the rainbow trap technique, where each shunt was configured to resonate in 

a determined frequency, where the energy was satisfactorily dissipated at each shunt frequency. A significant 

attenuation was achieved when all shunts were active simultaneously showing the efficiency of strategy for tunable 

broadband vibration control and attenuation. 
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