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Abstract. In engineering projects where the noise reduction or vibrations is desired, some control methodologies
are applied in order to provide safe and comfortable environments. For that, structural dynamic analysis is done to
verify the effects of wave propagation in the structure. Focusing on this analysis, a parametric variation on elastic
rods phononic crystals (PCs) was performed. The rods are made by two types of materials spatially distributed
periodically along its length. Each period will form a cell, in which was made the variation of the proportion of
each material in order to observe its influence on the bandgap formation. Another approach to have the formation
of the bandgap was the variation of the cross section of the cell. Those analyses were made both separately and
assembled. It was used the Spectral Element Method – SEM to obtain the results. FEM was used to validate the
results. Then, it was possible to obtain the rod behavior due the change of the proportion of materials and cross
section. In the case of the two variations there was a coupling of Bragg scattering effect, allowing both an increase
in its frequency band and in the attenuation level.

Keywords: Periodic structure, Phononic crystals, Wave propagation, Spectral Element Method, Bandgaps.

1 Introduction

In structural engineering projects, the control of vibration and noise levels is necessary. Furthermore, devel-
oping methods that predict and detect structural damage are essential factors to provide an environment that offers
comfort and safety, Santos [1].

In the engineering field, Mead [2] was one of the pioneers in the study of wave propagation in periodic
structures. His work showed that in an infinite beam with identical and equidistant supports, the harmonic motion
with free vibration can be considered a group of sine waves. Which propagate in different directions and speeds.

Kushwaha [3] was one of the first authors to investigate the structure of phononic crystals (PC). Likewise,
Sigalas, Economou [4], that through spheres inserted periodically in a homogeneous material, frequency gaps
were verified. Therefore, phononic crystals can be defined as artificial materials that have unit cell periodicities
with high impedance variation. The impedance difference is caused by the difference in properties between the
materials that compose the cells, geometric discontinuities or boundary conditions, Hussein et al. [5].

One of the characteristics of PCs is the appearance, in the dynamic responses of the system, of regions where
there is no wave propagation. These regions are known as bandgaps or Stop Bands, and the other frequency
bands where there is wave propagation are called Passband. One of the ways to find the bandgaps is through the
Spectral Element Method (SEM). This method uses the dynamic stiffness matrix for a periodic model, which is
then transformed into a Transfer Matrix (MT). In TM, the Floquet-Bloch Theorem is applied to solve the formed
eigenvalue problem. In it, the eigenvalues produce the wavenumber and the eigenvectors to the wave modes,
Pereira and Santos [6].

Much work has been done on wave propagation in periodic structures. Orris [7] employed numerical tech-
niques in the analysis of wave propagation. For this, it applied the displacement analysis method , where the study
structure is divided into an arbitrary number of discrete elements (nodes). Faulkner [8] applied numerical methods
on mono-coupled periodic structures with regularly spaced supports. Thus, it concluded that vibration problems
in mono-coupled systems can be analyzed by the combination of finite elements and the transfer matrix. Thus,
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it obtained close analytical and computational results. Wu et al. [9] investigated through SEM the properties of
bandgaps of a new type of lattice structure with second-order hierarchical periodicity, based on the hierarchical
structures of the surface of a butterfly’s wing. Pereira [6] analyzed, using the spectral element method, a periodic
structure of a closed circular cylindrical shell in two situations: fluid filled and in vacuum. This structure was
composed of unit cells, where there was a variation in the material that made them up. This proposed structure
aims to reduce the effect of vibrations on the elements, also providing noise control.

Han et al. [10] presented a variation of the transfer matrix (MT), defining the modified transfer matrix (MTM).
In a one-dimensional PC Euler-Bernoulli beam, it was found that MTM for the calculation of beam vibration has
a lower computational cost compared to MT. Edson [11] investigated the effect of attenuation as a function of
polyethylene concentration in an Euler-Bernoulli beam. Albino [12] studied the vibrations caused by passing
passenger trains, using the 3D Finite Element Method (FEM). PCs were simulated buried and periodically placed
between the train line and the passengers, in order to mitigate the effect of vibrations. In this work, therefore, the
effect of varying the frequency of vibration in a periodic structure of the rodtype will be analyzed, characterized
by the variation of the material and cross section area of the unit cell. The boundary conditions imposed on the
model were an excitation at a free end of the rod, while the other end was clamped.

2 SEM analysis in phononic crystal rods.

SEM was applied in a phononic crystal homogeneous rod, with a circular cross section area, as shown in
Figure 1. Through SEM in 1D PC structures, it is found a analytic solution using the Transfer Matrix of a unit cell,
and then expanding the dynamic analysis to all cells.

Figure 1. Phononic crystal rod model

According to Lee [13], starting from the free longitudinal vibration of a uniform rod, the relationship between
the forces and the nodal displacements are defined by:

SR(ω)d = f c(ω) (1)

Where d and f c(ω) are the displacements and nodal forces, respectively. SR(ω) is the spectral matrix of the finite
rod, defined by:

SR(ω) =
EA

L

SR11 SR12

SR12 SR22

 (2)

WhereinE is the Young’s modulus,A the cross section area, and L the length. SR11 = SR22 = (KLL) cot (KLL)
and SR12 = −(KLL) csc (KLL). Wavenumber is defined as a function of frequency (ω) and of the specific (ρ),
kL = ω

√
ρ/E.

From Equation 2 for a cell from a 1D periodic structure, we obtain the forces and displacements left (L) and
right (R) nodes:

−fLfR


k

=

SLL(ω) SLR(ω)

SRL(ω) SRR(ω)


k

dL
dR


k

(3)

Rearranging the terms of the Equation 3
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Renaming the terms of Equation 4

pkR = T k(ω)pkL (5)

Where T k(ω) is the transfer matrix derived from the spectral element model for the kth cell of the structural
network. It is related to vectors pkR and pkL. These represent, respectively, the degrees of freedom and forces in
the cross section of the cell.

In a 1D Phononic Crystal structure divided into N cells, each cell (m) has the right (R) boundary conditions
equal to the boundary conditions of the subsequent cell (m− 1), i.e, from the left (L), so that:

dL
(m) = dR

(m−1)

fL
(m) = −fR

(m−1)
(6)

For an infinite number of unit cells, we can apply the Floquet-Bloch Theorem to obtain:

dL
(m) = eψ · dR

(m−1)

fL
(m) = −eψ · fR

(m−1)
(7)

Where, ψ = ikbLc is called the Bloch parameter [14], i is the imaginary number, kb the Bloch wavenumber, and
Lc the length of the unit cell. Replacing Equation 7 in Equation 5,there is the eigenvalue problem:

pTk(ω) = eψp (8)

The eψ is the eigenvalue, which produces the Bloch wavenumber (kb), which corresponds to the wave prop-
agation modes in the structure.

3 Numerical results

Using the rod model represented in Figure 2, the rod boundary conditions are Clamped-Free with an excitation
at the free end. The forced responses were obtained by applying the transfer matrix (MT) method to a cell, and
then raising the result to the total number of cells.

Figure 2. Phononic crystal rod

Figure 2 represents the used rod model, which is divided into 10 equal Cells, in which each cell is composed
of Steel and Polyacetal, being divided into three parts. The end parts are made of Steel, while the central part
is made of Polyacetal. Figure 3 represents the unit cells with the same cross section area for a given material
proportion. The geometric and material properties are shown in Table 1.

3.1 Bandgaps and Attenuation Regions

The characteristic regions of PCs can be seen in Figure 4. In which Figure 4a and 4c represent the Frequency
Response Function (FRF) of the Receptance and Figure 4b and 4d represent the regions of bandgaps, for cells
shown in Figure 3. The shaded areas represent the first attenuation region. The solid blue lines represent the
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(a) (b)

Figure 3. a) cell composed of 90% Steel and 10% Polyacetal b) cell composed of 50% Steel and 50% Polyacetal

Table 1. Geometric and material properties of the rod

Geometry and material Nomenclature Value/formulation

Number of cell N 10
Rod length L 0.4 [m]
Cell length Lcell 0.04 [m]

Filling constant α 10% - 80%
Area constant β 0% - 50%

Cell’s Steel filling L1 α · Lcell/2 [m]
Cell’s Polyacetal filling L2 Lcell · (1− α) [m]

Polyacetal’s circular cross-section area A1 0.0079 [m2]
Steel’s circular cross-section area A2 (β + 1) ·A1 [m2]

Young’s modulus (Steel and Polyacetal) Es, Ep 210 · 109and 2.41 · 109 [Pa]
Mass density (Steel and Polyacetal) ρs, ρp 7860 and 1140 [kg/m3]

Damping factor η 0.01

Poisson’s ratio (Steel and Polyacetal) ν 0.30 and 0.35

SEM method, while the dashed red lines represent the FEM with 300 elements. The results between the analytical
method (SEM) and the approximation method (FEM), converging to each other. Figures 4b and 4d shows the
dispersion curves and refers to Bloch’s wavenumber. The cell corresponding to Figures 4a and 4b has a proportion
of α = 0, 9, i.e, 10% of Polyacetal and 90% of Steel, while the cell corresponding to Figures 4c and 4d has
a 50-50% proportion of Polyacetal and Steel (α = 0, 5). It is possible to verify the attenuation and bandgap
regions in certain frequency bands, as in Figure 4a, which has two large bandgap regions, the first bandgap band
between the 13KHz and 70KHz regions (shaded area) and the second between 72KHz and 140KHz KHz, which
can be identified with the imaginary part of the Bloch wavenumber different from zero, and therefore, in the same
frequency range in the graph of Figure 4b, there is an attenuation region, which corresponds to the region that
has the propagation of totally evanescent waves, which makes this region free of oscillation. In Figure 4d, with
the increase in the concentration of Polyacetal in the cell, there are several regions of bandgaps, which results in
an increase in the passing band regions, in which there are propagating waves, and a decrease in the attenuation
regions, which can be verified comparing Figures 4a and 4c.

3.2 Parametric area variation

The value of the end-cell area in Figure 1 was varied according to β (0% - 50%) more than the value of the
central-cell area, while the material concentrations were fixed at α. The values of α at each stage were varied from
10% until 80%.

The imaginary part of the Bloch number is represented by =(kL) = f(ρ,Ec, A, L, ω,K), on what Ec
represents the complex elastic modulus, varying only the area and frequency, its sensitivity can be related to
powered by =(kL) = f(ω,A). Figure 5a represents the 3D graph of =(kL) for a concentration of 20% Polyacetal
and 80% Steel, while Figure 5b represents the receptance graph of the same cell.
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(a) FRF receptance for a cell composed of 90%
Steel and 10% Polyacetal

(b) Bloch wavenumber for a cell composed of 90%
Steel and 10% Polyacetal

(c) FRF receptance for a cell composed of 50%
Steel and 50% Polyacetal

(d) Bloch wavenumber for a cell composed of 50%
Steel and 50% Polyacetal

Figure 4. FRF receptance of a rod with 10 unit cells (a and c). Dispertion curves of a cell (b and d).

(a) Parametric analysis of a cell with α = 0.8 and ranging β.
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Figure 5. Parametric analysis of the wavenumber.

Figure 6 represents a parametric analysis of one cell. The parameters varied to form the dispersion curves
(Im(kL)) were the frequency, cross section area (β) and material proportion in each cell (α). It is possible to
observe that with the increase of β, in all configurations there was an increase in the attenuation intensity, caused
by the increase in cell impedance. Figure 6a represents 90% Polyacetal and 10% Steel in one cell . It is observed
that, regardless of the value of β, large attenuation values are not observed in regions up to 40 KHz. With the
increase of the Steel concentration in the cell, the passing band appears, and consequently the change in the
attenuation areas, in all configurations it is verified that with the increase of the edge area, the attenuation intensity
also becomes greater. Figure 6h represents the greatest attenuation and destructive effect of Bragg, in the bands of
20-70 KHz and 110-150 KHz.
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(a) 90% Polyacetal and 10% Steel

(b) 80% Polyacetal and 20% Steel

(c) 70% Polyacetal and 30% Steel

(d) 60% Polyacetal and 40% Steel

(e) 50% Polyacetal and 50% Steel

(f) 40% Polyacetal and 60% Steel

(g) 30% Polyacetal and 70% Steel

(h) 20% Polyacetal and 80% Steel

Figure 6. Imaginary part of wavenumber, varying as a function of frequency and cross section. For each subfigure,
there is a cross section variation for a fixed proportion of material (α).

Figure 6g acquires a configuration of higher intensities with frequencies in the range of 15-50 KHz and 130-
160 KHz, while it has lower attenuations in the central bands, between 60-120 KHz. Figure 6f has a region between
90-110 KHz of low attenuation. For Figures 6a and 6b it occurs that regions with high attenuation are formed at
higher frequency, in addition to having a region of low attenuation up to 30 KHz, while for 6e and 6f regions with
higher frequencies have low attenuation.

It was also possible to observe the coupling of the effects in the Bragg’s scattering due to changes in the
cross section area and proportion of material. This changes caused an increase in both attenuation intensity and
frequency range where attenuation occurred.

4 Conclusions

This article presents the wave propagation in a 1D Phononic Crystal rod, in which the FRF and the Bloch
wavenumber were obtained. The validation of the results was made comparing the values obtained in the SEM and
FEM methods, obtaining agreement between the results. With the increase in the difference between the areas of
Steel and Polyacetal materials, there was an increase in the attenuation value, due to the increase in impedance in
the cell.

The variation of area and material in a fixed unit cell of the phononic crystal was also used. The change in the
concentration of Polyacetal and Steel in the rod has an effect on the cell attenuation. Even more, in some regions
there is no wave propagation, regardless of the concentration of material in the cell or variation of the peripheral
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area. Frequency regions where the attenuation effect in a cell characteristic did not occur may start to appear. This
was caused by the coupling effect of the Bragg scattering.
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