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Abstract. Mixed finite element computations arise in the simulation of multiple physical phenomena. Due to its
characteristics, such as the strong coupling between the approximated variables, the solution of such class of prob-
lems may suffer from numerical instabilities as well as a computational cost. The de Rham diagram is a standard
tool to provide approximation spaces for the solution of mixed problems as it relates H1-conforming spaces with
H(curl) and H(div)-conforming elements in a simple way by means of differential operators. This work presents
an alternative for accelerating the computation of mixed problems by exploring the de Rham sequence to derive
divergence-free functions in a robust fashion. The formulation is numerically verified for the 2D case by means of
benchmark cases to confirm the theoretical regards.
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1 Introduction

Several problems in engineering, when treated by finite element approximations, may result in mixed prob-
lems. In geomechanics, specifically, one may cite groundwater flow [1, 2] soil-structure interaction [3], reservoir
simulations [4], among others. In the literature, this class of formulations is named as “mixed” because more than
one field is approximated and usually one of them plays the role of Lagrange multipliers [5] and the approximation
of such class of problems may be performed by many different approaches.

In this work, we propose a strategy to explore the properties from the de Rham sequence in order to accelerate
the computation of mixed finite element problems. The de Rham sequence is given by

R −→ H1(Ω)
grad−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω) −→ {0}, (1)

and relates H1-conforming elements with H(curl)-conforming and H(div)-conforming elements via differential
operators (see for instance [6]). By the de Rham sequence it is well known that the curl ofH(curl) functions maps
to the null space of H(div) spaces, meaning that all ψ ∈ H(div) functions whose ∇ · ψ = 0 can be represented
by a linear combination of the curl of H(curl) functions. This property can be extended to finite dimensional
spaces if those are constructed in a balanced way, as is the case of the basis functions in NeoPZ [7] environment,
the computational tool employed in this work.

In this paper, we demonstrate that divergence-free approximations can be obtained by means ofH1-conforming
spaces. This class of functions is applied for solving the mixed version of the Laplace’s problem. In addition, we
perform some numerical experiments to demonstrate that these approximations leads to results identical to the ones
obtained by standard H(div) approximations of equivalent polynomial order.
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The paper is organized as follows: in section 2 we describe the divergence-free functions in 2D followed
by the weak formulation employing this family of functions as well as computational implementation aspects. In
section 3 we present preliminary results for the benchmark five-spot problem. Conclusions and perspectives are
drawn in section 4.

2 Formulation

2.1 Divergence-free functions in 2D

Firstly, consider the function φ = φ(x, y)ez ∈ H(curl,Ω), where ex, ey and ez are the unit vectors forming
the canonical base, φ(x, y) is an arbitrary scalar function and Ω ⊂ Rd is an open-bounded region with boundary
∂Ω = ∂ΩD ∪ ∂ΩN , with ∂ΩD and ∂ΩNdenoting the parts where Dirichlet and Neumann conditions are enforced,
respectively. Thus, it follows that ψ, the curl of φ, is given by

ψ = ∇×φ = ∇×(φ ez) =
∂φ

∂y
ex −

∂φ

∂x
ey. (2)

From the de Rham diagram 1 it follows the property that ∇ · ψ ≡ 0. ψ-type functions are denoted as
divergence-free and thus ψ ∈ H(div,Ω).

2.2 Weak form

In this section we apply the divergence-free functions to the mixed approximation of Laplace’s equation
whose problem reads: find σ ∈ H(div,Ω) and p ∈ L2(Ω), respectively flux and pressure fields, such that

K−1σ +∇p = 0

∇ · σ = 0
, (3)

with

p(s) = pD s ∈ ∂ΩD,

σ(s) · n = gN (s) s ∈ ∂ΩN , (4)

whereK−1 is the permeability tensor, nis the outward unit vector normal to ∂Ω and pDand gNare given functions.
Consider the infinite dimension function spaces given by

W = {ψ ∈ H(div,Ω);∇ ·ψ = 0} (5)

and

Z =
{
z ∈ L2(Ω)

}
, (6)

and their finite-dimensional version denoted by the superscript h, the characteristic length of a given finite element
discretization. Notice that W is the divergence-free subset of H(div,Ω).

The weak statement of (3)-(4) for the finite dimensional space, obtained by means of Gakerkin’s method,
reads as follows: find ph ∈ Zh and σh ∈Wh, with σ(s) · n = gN (s), such that

∫
Ω

ψh ·
(
K−1σh

)
dΩ−

∫
Ω

∇·ψhpdΩ = −
∫
∂ΩD

pD

(
ψh · n

)
d∂ΩD−

∫
∂ΩN

ψh ·gN d∂ΩN ∀ψh ∈Wh, (7)

∫
Ω

zh∇·σhdΩ = 0 ∀zh ∈ Zh. (8)

From (5), it follows that∇·σh ≡ 0 and∇·ψh ≡ 0 and then the weak form can be written as∫
Ω

ψh ·
(
K−1σh

)
dΩ = −

∫
∂ΩD

pD

(
ψh · n

)
d∂ΩD −

∫
∂ΩN

ψh · gN d∂ΩN . (9)
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Inserting (2) onto (9) one obtain∫
Ω

ψh
i ·
(
K−1ψh

j

)
dΩ
{
σ̄h

j

}
= −

∫
∂ΩD

pD

(
ψh

j · n
)
d∂ΩD −

∫
∂ΩN

ψh
j · gN d∂ΩN , (10)∫

Ω

{
∂φhi
∂y

ex −
∂φhi
∂x

ey

}
·

(
K−1

{
∂φhj
∂y

ex −
∂φhj
∂x

ey

})
dΩ {σ̄j} =

−
∫
∂ΩD

pD

(
ψh

j · n
)
d∂ΩD −

∫
∂ΩN

ψh
j · gN d∂ΩN ,

(11)

∫
Ω

∇φhi
(
K−1∇φhj

)
dΩ {σ̄j} = −

∫
∂ΩD

pD

(
ψh

j · n
)
d∂ΩD −

∫
∂ΩN

ψh
j · gN d∂ΩN , (12)

where i, j are indexes of nodal variables and {σ̄j} is the vector of flux nodal values.
As may be noticed, once φ ∈ H1 the introduction of divergence-free functions onto the mixed formulation

results in a bilinear operator equivalent to the H1 approximation of the Laplace’s equation, with proper boundary
conditions.

3 Numerical tests

This section presents two numerical tests with the proposed divergence-free functions. Both cases are sim-
ulated with quadrilateral finite elements, polynomial order = 2 (notice that it implies polynomial order 3 for φ in
Eq. (9)) and are compared to the standard mixed H(div) approach. The results are evaluated by means of the flux
L2 norm given by

||σ − σh||L2 =

∫
Ωh

(σ − σDF ) dΩh. (13)

3.1 Test 1 - Polynomial analytic solution

The problem consists in a square domain Ω = [0, 0] × [1, 1] with analytic solution p = x3y − y3x and
σ = K

[(
y3 − 3x2y

)
ex +

(
3y2x− x3

)
ey

]
. The permeability tensor is taken as the identity matrix and the plots

of both fields are presented in Fig. 1.

Figure 1. Test 1 - Exact pressure and flux (magnitude) fields.

The numerical tests are carried by taking the exact solution for enforcing Dirichlet and/or Neumann boundary
conditions, with a 10x10 structured finite element mesh. The first test consists in simulate the problem with
different combinations of boundary conditions, which are presented in Table 1.

As can be noticed, a loss of accuracy can be observed when applying both Dirichlet and Neumann boundary
conditions in different portions of the boundary. This problem is related to numerical instabilities when solving
the resulting problem with Neumann boundary conditions enforced by means of a penalization technique, which
turned the convergence dependent on the penalization parameter.

The use of hybridized formulations [8, 9] in combination with static condensation [10, 11] is a wide known
strategy on finite element codes to both reduce the size of the final algebraic system and produce a locally con-
servative method. Then, to overcome drawback described in the previous paragraph an hybridization technique
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Configuration ||σ − σDF ||L2 ||σ − σH(div)||L2

All boundaries Dirichlet 2.672612419123790e-05 2.672612419124198e-05

Neumann BC in the upper edge 2.672612419123695e-05 2.672612419124208e-05

Neumann BC in the upper and lower edges 2.808233896848702e-05 2.672612419124665e-05

Neumann BC in the upper lower and left edges 2.672612419124693e-05 2.672612419124956e-05

All boundaries Neumann 2.672612419125250e-05 2.672612419125112e-05

Table 1. Test 1 - Approximation error.

is applied, so the Neumann boundary conditions can also be weakly enforced. The results obtained with the
hybridization technique are presented in Table 2, where no instabilities are observed.

Configuration ||σ − σDF ||L2 ||σ − σaH(div)||L2

All boundaries Dirichlet 2.672612419123790e-05 2.672612419124198e-05

Neumann BC in the upper edge 2.672612419124245e-05 2.672612419124208e-05

Neumann BC in the upper and lower edges 2.672612419124286e-05 2.672612419124665e-05

Neumann BC in the upper lower and left edges 2.672612419124528e-05 2.672612419124956e-05

All boundaries Neumann 2.672612419124323e-05 2.672612419125112e-05

Table 2. Test 1 - Approximation errors with hybridized Neumann boundary conditions.

Test 2 - A benchmark: the five-spot problem

The second numerical test is the well known five-spot benchmark problem. It simulates the flow of a reservoir
with equally spaced injection and production wells. The problem has exact solution given by

p (x, y) = log
(√

x2 + y2
)
− log

(√
(x− d)

2
+ (y − d)

2

)
− log

(√
(x+ d)

2
+ (y − d)

2

)
− log

(√
(x− d)

2
+ (y + d)

2

)
− log

(√
(x+ d)

2
+ (y + d)

2

)
,

where d is the distance between injection and production wells, which for the adopted domain Ω = [0, 0] × [1, 1]
is equal to the unity. To avoid cumbersome expressions, the flux exact solution can be directly by σ = K∇p.

This case is simulated with the finite element mesh illustrated in Fig. 2, with 1140 finite elements. Again,
boundary conditions are set from the analytical expressions and the permeability tensor is taken as the identity
matrix. Injection and production wells are represented in the spatial discretization by semicircles with radius 0.05
units. Both exact flux and pressure fields are also presented in Fig. 2.

Analogously to the first test, this case was evaluated for different configurations of boundary conditions,
initially not hybridized. Results are presented in Table 3.

As can be noticed, the same numerical instabilities are observed in this case, which as presented in Table 4,
can be again avoided by using the hybridization technique on the Neumann boundary conditions.

Finally, a last numerical test is to extend the concept of hybridization also to the domain. It means that all
finite elements are disconnected and, after the static condensation (SC) procedure, the final system of algebraic
equations has the size of the introduced Lagrange multipliers (λh), responsible for the connection between the
elements [9].

Several alternatives can be proposed in this sense. In our tests, 8 scenarios were evaluated (described in
Table 5), including standard mixed H(div) and hybridized divergence-free functions. It is worthwhile mention
that compatible polynomial order needs to be employed to the Lagrange multiplier field, which corresponds to
scenarios 4-6 and 8 (for the boundary conditions only). In scenarios 7 and 8 the domain hybridization is performed
with a possibly lower cost alternative (in terms of numerical integration), with constant Lagrange multipliers.
The error analysis for all scenarios, as well as the number of equations before and after the static condensation
procedure is presented in Table 6.
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Figure 2. Finite element mesh for the five-spot benchmark

Configuration ||σ − σDF ||L2 ||σ − σH(div)||L2

All Dirichlet BC 3.421201755805085e-05 3.49215783010819e-05

1 well Neumann BC 3.421202011271095e-05 3.49179192926942e-05

Both wells Neumann BC 1.696853946870948e-03 3.49142599018502e-05

Both wells +Bottom 4.702552582222026e-04 3.47531302702461e-05

Both wells +Bottom+Top 1.085095943403631e-03 3.45729264067967e-05

Both wells +Bottom+Top+Left 3.421874332893253e-05 3.44082498054288e-05

All boundaries Neumann 3.421874332893253e-05 3.42242710057238e-05

Table 3. Test 2 - Approximation error.

Configuration ||σ − σDF ||L2 ||σ − σH(div)||L2

All Dirichlet BC 3.421201755805085e-05 3.49215783010819e-05

1 well Neumann BC 3.421203147649551e-05 3.49179192926942e-05

Both wells Neumann BC 3.421204539481118e-05 3.49142599018502e-05

Both wells +Bottom 3.421340823747712e-05 3.47531302702461e-05

Both wells +Bottom+Top 3.421864568239351e-05 3.45729264067967e-05

Both wells +Bottom+Top+Left 3.421952134609415e-05 3.44082498054288e-05

All boundaries Neumann 3.422427091598586e-05 3.42242710057238e-05

Table 4. Approximation error - Hybridized BC

The last numerical test have shown that divergence-free functions can be explored in a wide range of ap-
proaches in order to obtain a lower cost solution for mixed problems with the same accuracy ofH(div)-conforming
spaces. It is denoted specially by the considerable reduction on the number of equations in the arising algebraic
linear system.

4 Conclusions

In this paper we presented a formulation to approximate the solution of the 2D mixed Laplace problem
by means of the construction of divergence-free space functions by taking advantage of the de Rham sequence
properties. The results obtained in a first step have shown numerical instabilities when the problem to be solved
presented boundary conditions of Neumann type enforced by a penalization manner. This issue was overcome by
means of the boundary condition hybridization. In this case all results presented the same numerical approximation
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Scenario Approximation space Boundary conditions Hybridization

1 H(div) All Dirichlet No

2 H(div) All Neumann No

3 Divergence-Free All Dirichlet No

4 Divergence-Free All Neumann Boundary conditions

5 Divergence-Free All Dirichlet Domain

6 Divergence-Free All Neumann Boundary conditions + Domain

7 Divergence-Free All Dirichlet Domain (constant λ)

8 Divergence-Free All Neumann Boundary conditions + Domain (constant λ)

Table 5. Test 2 - Hybridization scenarios

Scenario Equations before SC Equations after SC ||σ − σh||L2

1 27210 27210 3.49215783010819e-05

2 27210 27210 3.42242710057238e-05

3 9211 5093 3.42120175580508e-05

4 9631 5513 3.42242709159859e-05

5 21790 5790 3.42120175566171e-05

6 22210 6210 3.42242671258764e-05

7 14070 5790 3.42120175581107e-05

8 14490 6210 3.42242711370172e-05

Table 6. Test 2 - Error analysis for several scenarios.

as standard H(div) function spaces of compatible polynomial order with a lower computational cost. A last
numerical test also presented different usages of divergence-free class of functions. In future work the formulation
may be explored for 3D simulations. In addition, preliminary results have shown that the presented approximation
have advantageous spectral properties that will be explored as a preconditioner for different numerical applications
such as porous media flows.
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