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Abstract.
We present new fully computable a posteriori error estimates for the primal hybrid finite element methods

based on equilibrated flux and potential reconstructions. The reconstructed potential is obtained from a local L2

orthogonal projection of the gradient of the numerical solution, with a boundary continuous restriction that comes
from a smoothing process applied to the trace of the numerical solution over the mesh skeleton. The equilibrated
flux is the solution of a local mixed form problem with a Neumann boundary condition given by the Lagrange
multiplier of the hybrid finite element method solution.

To establish the a posteriori estimates we divide the error into conforming and non-conforming parts. For the
former one, a slight modification of the a posteriori error estimate proposed by Vohralı́k [1] is applied, whilst the
latter is bounded by the difference of the gradient of the numerical solution and the reconstructed potential.

Numerical results performed in the environment PZ Devloo [2], show the efficiency of this strategy when it
is applied for some test model problems.
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1 Introduction

From the Generalized Prager–Synge (GPS) identity establish in the recent paper Cai et al. [3], we propose
and evaluate a new a posteriori error estimator for primal hybrid finite element methods applied to the Poisson
problem. The GPS identity extends the well-known Prager and Synge [4] (PS) identity (see also Bertrand and
Boffi [5]), which is valid for H1(Ω), for discontinuous functions and can be applied to provide a way to get
guaranteed upper bounds for the error associated to non-conforming methods. Usually, the PS identity for H1-
conforming formulation gives a posteriori estimate since an equilibrated flux is defined. Several works follow this
direction, see for example Braess et al. [6]. For H(div,Ω)-conforming formulation, it is necessary to obtain a
reconstructed potential to establish an a posteriori estimate, as in Cai et al. [7]. In the primal hybrid formulation,
where the solution is neither H1(Ω) nor H(div,Ω)-conforming, it is necessary to obtain the equilibrated flux and
the reconstructed potential simultaneously, as in Pencheva et al. [8].

In the current work, the reconstructed potential is obtained as a local L2 orthogonal projection of the gradient
of the numerical solution, with smooth boundary conditions that will ensure a global regularity. The boundary
conditions are continuous function obtained from the numerical solution. To obtain the equilibrated flux, the local
mixed problems are solved using the Lagrange multiplier of the numerical solution as the Neumann boundary
conditions. This procedure ensures that the reconstructed flux is equilibrated and is in H(div,Ω).

The work is organized as follows: the basic notation, the model problem and its discrete version are intro-
duced in the next section. The a posteriori estimates, the potential and flux reconstruction procedures are presented
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in Section 3. Finally, Section 4 evaluates the proposed error estimator for a problem with smooth solution and a
singularity problem.

2 Notation and preliminaries

Consider the following model problem in a polygonal domain Ω ⊂ R2:


∇ · (−K∇u) = f, in Ω

u = gD, on ∂ΩD

−K∇u · n = gN , on ∂ΩN

, (1)

where f ∈ L2(Ω), gD ∈ C(ΩD), gN ∈ L2(∂ΩN ) and K is a uniformly bounded symmetric positive definite
tensor. The boundary ∂Ω is divided into the disjoint parts ∂ΩD and ∂ΩN , such that, ∂Ω = ¯∂ΩD ∪ ¯∂ΩN and ∂ΩD
is non-empty set.

Let T = {Th} be a family of shape-regular triangulations of a domain Ω ⊂ R2. The elements K ∈ Th are
open, convex and pairwise disjoint, such that, Ω =

⋃
K∈Th K. Associated to Th ∈ T there is a piecewise constant

function hTh defined by: hTh|K = hK := diam(K), K ∈ Th. The index h refers to the maximum of hK ,K ∈ Th.
Let Eh be the set of all edges E of all elements in Th. It is divided into two subsets: E̊h = {E ∈ Eh : E ⊂ Ω} and
E∂ = {E ∈ Eh : E ⊂ ∂Ω}.

For ω ⊂ Ω, the scalar Sobolev space Hα(ω), of real order (or index) α, is equiped with the usual inner
product, norm and semi-norm (·, ·)α,ω , ‖ ·‖α,ω , and | · |α,ω , respectively. In particular, for α = 0, the notation ‖ ·‖ω
and (·, ·)ω is adopted instead of ‖ · ‖0,ω and (·, ·)0,ω , respectively. Similarly, for any E ∈ Eh, denote by 〈·, ·〉E and
‖ · ‖E the inner product and the induced norm in the space L2(E), respectively. The subscript ω is dropped when
ω = Ω.

The space of vector functions with square-integrable weak divergences will be denoted by H(div,Ω), and
Hα(Th) is the space of piecewise Sobolev Hα-functions, Hα(Th) = {v ∈ L2(Ω) : v|K ∈ Hα(K),∀ K ∈ Th}.
Also, the following spaces are required,

Λ(Eh) =
{
µ ∈ H−1/2(Eh);µ = σ · nK|∂K , σ ∈ H(div,Ω), ∀K ∈ Th

}
,

Λ0,N (Eh) =
{
µ ∈ Λ(Eh);µ|∂ΩN

= 0
}
, and Λg,N (Eh) =

{
µ ∈ Λ(Eh);µ|∂ΩN

= gN
}
.

Finally, any differential operator defined over piecewise Sobolev spaces will be indicated with the same notation
used for the classic Sobolev spaces. The argument indicates that it should be taken piecewise.

For a given elementK ∈ Th we denote nK the unity normal vector that points outwardK, and by n the unity
normal vector on ∂Ω. Additionally, there is an associated element K̂ and an invertible geometric diffeomorfism
FK : K̂ → K, transforming K̂ into K (analogous for a face E ∈ Eh). For this paper, consider the quadrilateral
K̂ = [−1, 1]× [−1, 1] and linear Ê = [−1, 1] elements.

We denote by Qk1,k2(K̂) the polynomial of maximum degree ki, i = 1, 2, in each variable over the element K̂
and Qk(K̂) = Qk,k(K̂). Then, the following finite approximation space are defined,
Yk = {µ ∈ Λg,N (Eh) : µ|E ∈ Qk(E), ∀E ∈ Eh}, and for a given natural n ≥ 1, the enriched polynomial space is
defined by U+n

k =
{
v ∈ H1(Th) : v|K ∈ Qk+n(K), ∀K ∈ Th

}
⊂ H1(Th).

The standard finite element approximation for the problem (1) consist of construct a finite subspace ofH1(Ω)
with functions which are continuous at the inter-element boundaries. As for broken spaceH1(Th), the constraint of
inter-element continuity has been removed, the continuity is imposed introducing the Lagrange multiplier among
the inter-element, for a complete description of the method see Raviart and Thomas [9].

The discrete primal hybrid formulation can be read as: Find (λh, uh) ∈ Yk × U+n
k , such that,

∑
K∈Th

〈µh, uh〉∂K =
∑
K∈Th

〈µh, gD〉∂K∩∂ΩD
, ∀µh,∈ Yk ∩ Λ0,N (Eh) (2)

∑
K∈Th

[(K∇uh,∇vh)K + 〈λh, vh〉∂K ] =
∑
K∈Th

(f, vh)K , ∀vh ∈ U+n
k . (3)
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As the approximate solutions uh given by the primal hybrid formulation (2)-(3) is not in H1
gD (Ω) and

−K∇uh /∈ H(div,Ω), we can introduce a “correction” for this phenomenon using the concept of “reconstructed
flux” and “reconstructed potential”, that are introduced in the next section.

3 A posteriori error estimates

In many numerical solutions of practical problems the accuracy of the numerical approximation is deterio-
rated by local singularities that can be arisen, for example, from re-entrant corners, interior or boundary layers or
change of the boundary condition. As mentioned by Verfürth [10], an alternative can be to refine the approximation
solution near the critical regions, but how to identify those regions and how to obtain a good balance between the
refined and unrefined regions such that the accuracy is optimal? In this case, a posteriori error estimation is useful
for efficient error control of the numerical simulations, in practical problems where the real solution is unknown.
The approach adopt in the current work is based on Prager-Synge Theorem (see Prager and Synge [4] and Bertrand
and Boffi [5]) which provides an orthogonality relationship that leads to an upper bound for the unknown exact
error.

On Prager-Synge Theorem, given u ∈ H1
D(Ω) a solution of (1), it holds for all w ∈ H1

D(Ω) and
σ ∈ Σf (Ω) = {σ ∈ H(div,Ω) : ∇ · σ = f in Ω, σ · n|∂ΩN

= gN} , that,

‖K−1/2σ +K1/2∇w)‖2 = ‖K1/2∇(u− w)‖2 + ‖K−1/2σ +K1/2∇u‖2.

The variable w ∈ H1
D(Ω) is the reconstructed potential and σ ∈ Σf (Ω) is the reconstructed flux, also known as

equilibrated flux.
Cai et al. [3] proposed a Generalized Prager-Synge identity applicable to broken Sobolev space H1(Th) in

sense that, given u ∈ H1
D(Ω) be the solution of (1), then for all w ∈ H1(Th),

‖K1/2∇h(u− w)‖2 = inf
τ∈Σf (Ω)

‖K−1/2τ +K1/2∇hw‖2 + inf
v∈H1

D(Ω)
‖K1/2∇h(v − w)‖2.

As a consequence of the GPS identity, it is possible to derive a following reliable a posteriori error estimation
in the energy norm for the potential, which are free of an indeterminated constant. A similar a posteriori error
estimate was proposed to a wide class of finite element methods in Pencheva et al. [8]. However, the strategy
proposed in this work is different since it is based on the Helmholtz decomposition, which is also the key ingredient
in the establishment of GPS identity.
Theorem 1 Let Ω ⊂ R2, u be the weak solution of model problem (1), and uh ∈ H1(Th) be the solution of the
hybrid primal approximation (2)-(3), then it holds that,

‖K1/2∇h(u− uh)‖2 ≤
∑
K∈Th

(ηK,R + ηK,F )
2

+
∑
K∈Th

ηK,NC ,

where

ηK,R =
C

1/2
P hK

C
1/2
K,K

‖f − fk‖K , ηK,F = ‖K−1/2(th +K∇uh)‖K , and ηK,NC = ‖K1/2∇h(sh − uh)‖2K .

Here, CP = 1
π2 (see Vohralı́k [11] and references therein) is the constant from the Poincaré inequality, CK,K is the

smallest eigenvalue of K on K, and sh and th are the reconstructed potential and the reconstructed equilibrated
flux, respectively.

Observe that the a posteriori error estimator given by Theorem 1, is viable only if the reconstructed functions
sh and th can be reconstructed using only local computations.

The current work, propose to construct sh and th as follows: The potential sh is based on Ainsworth and Ma
[12] and is obtained using two steps: a) a smoothing procedure; and b) solving a local Dirichlet boundary problem.
To obtain an equilibrated flux, a local mixed problem is solved using the Lagrange multiplier λh, obtained from
the primal hybrid approximation (2)-(3), as a Neumann boundary condition. The procedures are described below.
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Potential Reconstructed Once we have the numerical solution uh of formulation (2)-(3), the potential recon-
struct sh is build up in next two steps:

a) Inter-element smoothing procedure: For all E ∈ E̊h such that E = ∂Ki ∩ ∂Kj , with Ki, Kj ∈ Th, set the
function γ ∈ Yk such that γ|E satisfying

〈1
2

(ω(Ki)uK
i

h |E + ω(Kj)uK
j

h |E )− γ, v〉E = 0, ∀ v ∈ Qk(E)

where uKh := uh|K and ω(Ki) is the largest eigenvalue of K on Ki. For E ⊂ ∂ΩD, we set γ|E as the
orthogonal projection of gD over Qk(E). For xn a vertex of the partition Th, we set the pach T (xn) =
{E ∈ Eh; xn ∈ Ē}, we update the values

γ(xn)← 1

ωn

∑
E∈T (xn)

γ|E(xn),

with ωn being the cardinality of T (xn).
b) Solving Dirichlet local problems: Given γ ∈ Yk the potentials sKh = sh|K are obtained by solving primal

finite element formulation of local problems in K using γ to set the boundary data. Namely, find sKh ∈
Qk+n(K), such that,

(K∇sKh ,∇vh)K = (K∇uKh ,∇vh)K , ∀ vh ∈ Qk+n(K) ∩H1
0 (K)

sKh = γ on ∂K.

Note that although sh it is locally defined as an orthogonal projection, we obtain a global smoothness.

Equilibrated flux To define the procedure for a equilibrated flux from the numerical solution uh some defini-
tions are necessary. Consider the finite approximation spaces over the master element K̂: M+n

k (K̂) = Q+n
k (K̂) =

Qk+n+1,k(K̂) × Qk,k+n+1(K̂) and Wk+n(K̂) = Qk+n(K̂) . It follows that those spaces are divergence-
compatible, in sense that, ∇·M+n

k (K̂) = Wk+n(K̂). Furthermore, M+n
k (K̂)×Wk+n(K̂) ⊂ H(div, K̂)×L2(K̂).

For more details about divergence compatible FE spaces see Farias et al. [13].
The equilibrated flux reconstruction th ∈ H(div; Ω), is defined as th|K = tKh ∀ K ∈ Th, where tKh is the

(component) solution of local mixed form problem: Find (tKh , p
K
h ) ∈M+n

k (K)×Wk+n(K), such that,

(K−1tKh ,vh)K − (pKh ,∇ · vh)K = 0, ∀ vh ∈M+n
k (K) ∩H0,N (div;K) (4)

−(∇ · tKh , wh)K = −(f, wh)K , ∀ wh ∈Wk+n(K) (5)

tKh · nK = λh on ∂K (6)

where H0,N (div;K) = {v ∈ H(div,K)/v · n|∂K∪∂ΩN
= 0} and the Neumann boundary condition λh is the

Lagrange multiplier of the numerical solution of (2)-(3).

4 Numerical Results

The quality of a posteriori error estimation is described by the effectivity index, which is the quotient of the
error estimate by the true error norm. That is,

Ie =
Estimated Error

Exact Error
=

(∑
K∈Th (ηK,R + ηK,F )

2
+
∑
K∈Th ηK,NC

)1/2

‖K1/2∇(u− uh)‖
,

is expected that the effectivity index goes to one as the mesh size h goes to zero.
In order to evaluate the proposed error estimator, two problems are simulated: one with a smooth solution

over a quadrilateral domain, and the other with a strong singularity at the origin over a L-shaped domain. For both
simulations, only quadrilateral finite-elements are used, the diffusion tensorK is the identity, and ∂ΩD = ∂Ω.
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Problem with smooth solution: We solve the boundary value problem (1) in Ω = [0, 1]2, with f and gD being
chosen so that the exact solution is the function u(x, y) = sin (π x) sin (π y).

The primal hybrid formulation (2)-(3) was performed with the approximation spacesU+n
k ×Yk for k = 1, n =

3. Multiple partitions are ran T = {Th}, which are obtained by uniformly refining Ω, for h = {1/4, 1/8, 1/16, 1/32}.
The progression of the exact and estimated errors are shown on the left side of Fig. 1 along with the effectivity
index on the right. The proposed estimated error has been shown to decrease with the same rate as the exact error
as the mesh is further refined.
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3 · 10−2 3 · 10−11
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h

E
rr
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Exact error
Estimated Error

10−1

1

1.1

1.2

1.3

1.4

3 · 10−2 3 · 10−1

h

I e

Figure 1. Smooth problem: on the left side, the histories of convergence of the exact error (blue line) and the
estimator error (red line). On the right side the effectivity index Ie. The space configuration is k = 1, n = 3 and
h = 1

2j , with j = 1, · · · 4.

The errors over each element are shown in Fig. 2, where the exact error per element is shown on the left
side and the local effectivity index, on the right side. The space configuration is k = 1, n = 3 and the element’s
diameter h = 1/8.

Exact Error Effectivity Index

Figure 2. Smooth problem: On the left side, the exact error per element. On the right side, the local effectivity
index. The space configuration is k = 1, n = 3, and for an element diameter h = 1/8.

Problem with singularity: Over the L-shaped domain Ω = [−1,−1]2 \ [0, 1] × [−1, 0] we solve (1) with f
and gD being chosen so that the exact solution is the function u(r, θ) = r2/3 sin ( 2

3θ), where r =
√
x2 + y2

and θ = tg−1( yx ). The domain is modelled by inserting a single quadrilateral over each quadrant, followed
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by uniformly refining them. The simulation is ran by solving the primal hybrid formulation of the problem,
where (uh, λh) ∈ U+n

k × Yk for k = 1, n = 3 are looked for, over the partitions T = {Th} such that h =
{1/4, 1/8, 1/16, 1/32}. The progression of the exact and estimated errors are shown on the left side of Fig. 3. The
proposed estimated error has been shown to decrease with the same rate as the exact error as the mesh is further
refined.
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Figure 3. Singularity problem: on the left side, the histories of convergence of the exact error (blue line) and the
estimator error (red line). On the right side the effectivity index Ie. The space configuration is k = 1, n = 3 and
h = 1

2j , with j = 1, · · · 4.

The errors over each element are shown in Fig. 4, where the exact error per element is shown on the left side
and the local effectivity index, on the right. The space configuration is k = 1, n = 3 and the element’s diameter
h = 1/8.

Exact Error Effectivity Index

Figure 4. Singularity problem: On the left side, the exact error per element. On the right side, the local effectivity
index. The space configuration is k = 1, n = 3, and the mesh diameter h = 1/8.

The above results illustrate that the estimator captures precisely the behavior of the exact error in both prob-
lems. Although, for the singular problem, the upper bound obtained is a little far from the exact error when
compared with the analytic case, this is expected if considered the nature of the problem. The numerical results
suggests that the estimated error stated in Theorem 1 can be used as an error indicator in an adaptivity process.
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5 Conclusion

A new a posteriori error estimation for the primal hybrid finite element method applied to Poisson’s equation
is proposed. The error estimation is based on the reconstruction of an equilibrated flux and potential, that are
obtained by solving local problems which ensures a global smoothing. Numerical examples illustrates the accuracy
of the error estimation for a smooth and a singular problems. The results indicates that the strategy is consistent
and can be applied to guide adaptive mesh refinement strategies.
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