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Abstract. The design of accurate multiscale methods for the simulation of multiphase flows in channelized,
high-contrast porous media remains as an important challenge in typical problems posed by the energy and envi-
ronmental sectors. The Multiscale Robin Coupled Method (MRCM) [] is a recently proposed multiscale domain
decomposition method, that is a generalization of the Multiscale Mixed Method (MuMM) [2]. Such method en-
sures weak continuity of both normal fluxes and pressure for local problems with Robin boundary conditions,
through low-dimensional interface spaces defined over the skeleton of a domain decomposition. The accuracy
of the MRCM depends on the choice of the functions that span these interface spaces as well as on a Robin
condition parameter. In this study we compare the accuracy of the MRCM in two-phase flow simulations with in-
terface spaces spanned by: (i) piecewise polynomial functions; (ii) informed functions [3]; and (iii) physics-based
functions [4]. We investigate the effect of such choices in approximating the saturation fields as well as the oil
production curves for high-contrast channelized permeability fields. Numerical experiments indicate that the spe-
cialized interface spaces (ii) and (iii) have the potential to produce more accurate results by better accommodating
the channelized features in comparison with standard polynomial functions.

Keywords: Porous Media, Multiscale Methods, Interface Spaces

1 Introduction

The design of accurate and efficient methods for the simulation of multiphase flows in channelized, high-
contrast porous media is an important challenge for the approximation of problems posed by the energy and
environmental sectors. The numerical solution of such problems must capture the heterogeneity of the porous
medium. Depending on the level of details required and the size of the problem the model may have several billion
cells and thousands of time steps, making the numerical simulations extremely expensive [J5].

Multiscale methods have been introduced to provide accurate approximations at a reduced computational cost
by decomposing large computational tasks in a family of smaller problems that can be solved simultaneously in
parallel machines. This class of methods provides significant advances in the modeling of multiphase flow and
transport problems in heterogeneous porous media, and has received considerable attention from several groups
L6

We consider the family of multiscale domain decomposition methods built in the Multiscale Robin Coupled
Method (MRCM, [1]]) to compute velocity fields for the simulations of two-phase flows in highly heterogeneous
porous media. The MRCM is a recently proposed multiscale domain decomposition method, that is a generaliza-
tion of the Multiscale Mixed Method (MuMM, [2])), the Multiscale Mortar Mixed Finite Element Method (MMM-
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FEM, [7]), and the Multiscale Hybrid-Mixed Finite Element Method (MHM, [8]]). Such method ensures weak
continuity of both normal fluxes and pressure for local problems with Robin boundary conditions, through low-
dimensional interface spaces defined over the skeleton of a domain decomposition. The accuracy of the MRCM
depends on the choice of the functions that span these interface spaces as well as on a Robin condition parameter.

In this study, we consider an adaptivity strategy for setting the Robin parameter according to the permeability
variations [9]], and compare different strategies to define the interface spaces. The accuracy of the MRCM in
two-phase flow simulations is investigated considering interface spaces spanned by: (i) piecewise polynomial
functions; (ii) informed functions [3]; and (iii) physics-based functions [4]]. Our multiscale numerical results are
compared with fine grid solutions. We show the effect of such choices in approximating the saturation fields
as well as the oil production curves for high-contrast channelized permeability fields. Numerical experiments
indicate that the specialized interface spaces (ii) and (iii) have the potential to produce more accurate results by
better accommodating the channelized features in comparison with standard polynomial functions.

2 The Multiscale Robin Coupled Method

The MRCM has been developed to find the Darcy velocity u(x) and the fluid pressure p(x) describing flows
in porous media, which (in the case of single-phase flow) are given by

u =—k(x)Vp inQ
V-u =gq in 2
(D
=g on 082,
u-n =z on 082,

where k(x) = K(x) is the permeability tensor; ¢ is a source term; g and z are the pressure and normal velocity
boundary data, specified at boundaries 0§2,, and 9€2,,, respectively (n is the outward unit normal). The domain §2
is decomposed into subdomains {€2;};=1,... n, and the MRCM formulation consists in finding solutions (u};7 p}L)
for each subdomain €2;, and global unknowns (U, Pr) € U x Py satisfying the local problems

u, = —r(x)Vp in Q;
V-ou, = ¢ in Q;
P = g on 9€; N 0, 2)
u,-n’ = =z on 98; N 9N,
—Bul -nt+pl = —BUyn-n'+ Py ondNT

and compatibility conditions on the skeleton I' (the union of all interfaces I';; = £2; N §2;)

N . . N
Z/ (uf -n’) ¢ dl =0 and
oQ;Nr

i=1

/ Bi(ul, -n' —Ugn-n') ¢ (n-n')dl =0, (3)
;NI

=1

for all (¢,v) € Uy x Py, where Uy and Py are, respectively, the flux and pressure interface spaces defined
over the edges of I'. Here, i1’ is the normal vector to I' pointing outwards of €2;, and 1 is a fixed normal vector
to I' pointing outwards of €2;. The Robin condition parameter for the coupling of the subdomains is given by
Bi(x) = ‘Z(:&};I, where H is the characteristic size of the subdomains and «(x) is a dimensionless function defined
according to the permeability variations.

The accuracy of the MRCM solution is mainly related to the Robin parameter 3; (see [9]]) and to the functions
that span the interface spaces Uy and Pg. In this work, we compare the accuracy of the multiscale solutions
produced by two distinct problem-dependent approximation spaces (or informed spaces) to those obtained with
interface spaces spanned by piecewise polynomial functions. A brief description of how to build informed spaces
are the subject of the next subsections.
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2.1 Interface spaces based on SVD

The first procedure considered here is based on a two-step procedure: (i) construction of the so called
snapshot space by retrieving traces of pressure and velocity solutions over I';; on local Darcy-flow problems
containing I'; ;; (ii) selection of basis functions by applying a dimensional reduction technique (SVD in this study).
The selected functions are defined over I' and have support on I';;. To make it precise, consider an interface I'; ;
and a region wy, built, for example, as a collection of element such that I'; ; C wy. In order to build the snapshot

space for interface I'; ; we solve m = 1,..., N local Darcy-flow problems on these oversampling regions wy, i.e.,
u” = —KVpp" in wy,
V . uz-,m = Ck,m in W , (4)
kmok,
B(uy ™, pp ™ B ™) = G (2) on dwy,

where B is a boundary operator which enforces either pressure, flux or Robin boundary conditions and 4., (z) is
a function that enforces data boundary condition and C}, ,,, a the source term. After solving these problems, we
retrieve the corresponding pressure and flux solution through the faces e € I';; and end up with two column arrays
U*™ and P*™ which are used to build the snapshot matrices

T
A =[PP PR

The next step is to perform the SVD decomposition on the two matrices above. After that, the first £y and kp left
singular vectors are add to the basis of Uy and Py, respectively.

A comment is in order here: Although the MRCM allows to the use different spaces, a piecewise constant
function with support on I';; is added to the space Py to ensure a globally conservative solution. In doing that we
subtract the constant component of each column of Al;” , followed by the SVD decomposition. From that, we take
the first kp — 1 left singular vectors for the basis of Py (see [3] for more details).

2.2 Interface spaces based on physics

Other choices for interface spaces besides classical polynomials are the new spaces based on the geometry
of the heterogeneities [4]], that are built to capture the variations of the solution caused by channelized features
(such as high permeability channels and barriers). The physics-based basis functions for pressure are defined at
the interfaces that contain high permeability channels and the physics-based basis functions for flux are set at the
interfaces that contain barriers.

Let [a,d] denote a line segment that is the support of an interface I'; ; C I' through which channelized
structures pass. If a high-contrast channel passes in [b, ¢] C [a, d], we define the following pressure basis functions:

rT—a .
b — ifz € (a,b) —e
T itz e (a,b) b Y76 itre(cd)
di(z)=4{ b-a Po(x) = 1 ifee(be)  s(r)=9 4-¢
0 otherwise d—zx . 0 otherwise.
T ifz € (c,d)
—c
)
On the other hand, if a barrier passes in [b, ¢| C [a, d], the flux basis functions are given by:
1 ifz € (a,b) 1 ifz e (be) 1 ifz € (¢ d)
$1(z) = $a(r) = ¢s(z) = (6)
0 otherwise 0 otherwise 0 otherwise.

Both physics-based spaces can be defined simultaneously at the same interface, and the basis functions de-
fined above can be easily extended to interfaces with more than one channelized structure. Linear polynomials are
used at the interfaces without the presence of channelized features [4]].

CILAMCE 2021-PANACM 2021

Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
1l Pan-American Congress on Computational Mechanics, ABMEC-IACM

Rio de Janeiro, Brazil, November 9-12, 2021



Comparison of interface spaces for multiscale mixed methods applied to two-phase flows in porous media

3 Two-phase flows

For two-phase flows of water and oil (denoted by w and o) in a fully saturated medium, the elliptic problem
in eq. is coupled with the following transport problem of water saturation (denoted by s)

%—FV-(f(s)u) =0 inQ

ot
s(x,t=0) =0 inQ (N
s(x,t) =1 in0dQ~,

where u = u(x, t) and 90~ = {x € 90, u-n < 0} are the inlet boundaries. The function f(s) is the fractional
flow of water, given by f(s) = Ay (8)/A(s), where A(s) = Ay, (8)+Ao(8) is the total mobility. The mobility of each
phase is given by \;(s) = k,;(s)/u;, where k,;(s) and p;, 5 € {w, o}, are respectively the relative permeability
and the viscosity of phase j. In this context, the conductivity in eq. is given by k(x) = A(s(x))K(x). The
hyperbolic conservation law in eq. is discretized by the upwind scheme (space) and the forward Euler method
(time). The coupled system consisting of eqgs. (I)-(7) is solved sequentially by an operator splitting technique [10]].

4 Numerical experiments

In this section we present numerical experiments to compare the accuracy of the MRCM in two-phase flow
simulations with different choices for the interface spaces. We use the relative permeability curves k,,, = 52
and k., = (1 — 3)2, a viscosity ratio of p,/u,, = 10, and time expressed in PVI (Pore Volume Injected) [5].
The flow is established by imposing flux boundary conditions from left to right and no-flow at top and bottom in
the domain = [0, 1] x [0,1]. No source terms are considered. A high-contrast permeability field containing
high permeability channels and barriers is considered, see Fig. (1| (left). The background of the permeability field
is given by K (x) = e*%()  where £(x) is a self-similar Gaussian distribution having zero mean (truncated at
short distances) and covariance function given by C(x,y) = |x — y|~'/2 [11]. The permeability contrast is
Kmax/Kmin = 108

Concerning the MRCM, a computational grid with 64 x 64 fine grid cells equally divided into 4 x 4 subdo-
mains is considered. We refer to the MRCM with the adaptive strategy [9] as aMRCM, and denote the combination
of the aMRCM with the polynomial, informed spaces based on SVD, and physics-based spaces by aMRCM-POL,
aMRCM-SVD, and aMRCM-PBS, respectively. The oversampling region wy, for the informed spaces based on
SVD is taken as a rectangular region that fits the interfaces in length and is built using the fine 4 grid cells closest to
interface I';; in both normal directions. The boundary operator imposes an inflow boundary condition with source
term properly adjusted such that fwk Crom = J, ey, Om-

Figure || (center) shows the evolution in time of the relative errors for saturation considering as reference
a solution produced by a fine grid solver. We compare the three choices for the interface spaces: piecewise
polynomial, based on SVD, and physics-based. In the case of informed spaces based on SVD we consider a
number of degrees of freedom per interface for each unknown equivalent to the polynomial spaces (linear for
pressure and flux in this example). We note that the errors provided by the taMRCM-POL and aMRCM-SVD are
comparable, while the errors delivered by the aMRCM-PBS are the smallest. The oil production curves are shown
in Fig. (1] (right), where we note that the procedures that better predict oil production curves are the tMRCM-PBS
and aMRCM-SVD. Note that the oil production curve computed by the aMRCM-POL differs considerably from
the fine grid reference curve. Although the global errors of aMRCM-POL and aMRCM-SVD are comparable,
when considering the production curves, it is possible to spot a huge improvement for the latter.

A comparison of the saturation profiles can be found in Fig[2] where we note that the more accurate solutions
are yielded by the aMRCM-SVD and aMRCM-PBS. Therefore, the design of the pressure and flux basis functions
has a large impact on the transport of the water saturation.

Next, we add more degrees of freedom to the aMRCM-POL and «MRCM-SVD approximations. Figure 3|
shows the saturation errors (left) and oil production curves (right) provided by the atMRCM-POL and aMRCM-
SVD considering (ky, kp) = (2,2), (ku,kp) = (3,3), (ku,kp) = (4,4), and (ky,kp) = (5,5). We note that
to recover an error similar to the produced by the aMRCM-PBS, polynomials of the fourth order are needed. The
errors of the aMRCM-POL drop when higher dimensional interface spaces are used, while the tMRCM-SVD does
not benefit from the increase in the number of degrees of freedom, for this example. The same observation can be
drawn from the oil production curves as well as from the saturation profiles illustrated in Fig. ]
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Figure 1. Log-scaled permeability field (left), saturation errors (center), and oil production curves (right).
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Figure 3. Saturation errors (left) and oil production curves (right).

We show in Table |1| the number of interface unknowns required by all the interface spaces considered. An

average value for the number of degrees of freedom per interface is presented for the «MRCM-PBS since it may
be different on each interface depending locally on the permeability field. If we consider the least expensive
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Figure 4. Saturation profiles produced by the aMRCM-POL and aMRCM-SVD with different degrees of freedom.

choices in terms of degrees of freedom, that are the most attractive options from the point of view of computational
efficiency [12], we note that the aMRCM-SVD with (ky,kp) = (2,2) and the aMRCM-PBS have the best
potential to produce more accurate results by better accommodating the channelized features in comparison with
the aMRCM-POL with (ky,kp) = (2,2). Note that among all the interface spaces considered in Fig. [3| and
Table [T} the aMRCM-PBS is the one that provides the best balance between precision and number of interface
unknowns, and hence, computational cost. Therefore, we conclude that the specialized interface spaces are able
to offer improved accuracy in comparison with the standard polynomial spaces in the presence of high-contrast
channelized structures, while keeping efficient simulations.

Table 1. Number of interface unknowns required by the interface spaces.

Interface space Dof’s per interface Total of interface unknowns
aMRCM-POL and aMRCM-SVD (ku,kp) = (2,2) 96
aMRCM-POL and aMRCM-SVD (ku,kp) = (3,3) 144
aMRCM-POL and aMRCM-SVD (ku,kp) = (4,4) 192
aMRCM-POL and aMRCM-SVD (ku,kp) = (5,5) 240

aMRCM-PBS (ku,kp) = (2.29,2.04) 104

5 Conclusions

The MRCM not only generalizes other multiscale mixed methods but also shows improved accuracy for
highly heterogeneous porous media flows. With the combination of its Robin parameter adaptivity and the spe-
cialized interface spaces (informed spaces based on SVD and physics-based spaces), we achieve considerably im-
provement in accuracy in the approximation of two-phase flows when compared to the classic polynomial spaces.
We remark that other multiscale solvers can take advantage of the developments reported in this work since the
interface spaces considered here can be extended to different multiscale methods in a straightforward manner.

Future works include the extension of the interface spaces to the 3D scenario. In the case of the informed
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spaces such extension is immediate by replacing the local boundary operators in 2D with their version in 3D. On
the other hand, the construction of automatized physics-based spaces in 3D requires new developments, which are
currently being considered by the authors.
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