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Abstract. The persistent search for new structural solutions has generated great interest from the scientific 
community in understanding the static instability and nonlinear dynamics of multistable structural systems. 
Structural multistability is achieved through structural arrangements that have several stable equilibrium 
configurations and have a wide field of applications, such as: vibration control, self-deployable and collapsible 
structures, dynamical systems with a periodic pattern and in the development of new materials (metamaterials), 
among others. In this work we study the static and dynamic nonlinear behavior of a multistable structural system 
formed by a sequence of von Mises trusses. For this, the non-linear equilibrium equations and equations of motion, 
in their dimensionless forms, are obtained through the criterion of minimum potential energy and Hamilton’s 
principle. Based on dimensionless parameters, equipotential energy surfaces and curves, non-linear equilibrium 
paths, time responses, phase portraits and basins of attraction are obtained. Then a parametric analysis is conducted 
to identify the influence of the dimensionless parameters on the quantity and stability of equilibrium positions. 
From the results, the importance of geometric nonlinearity in the dynamics and stability in this new class of 
structural systems is verified. 
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1  Introduction 

Structural engineers search for more efficient structural solutions to increasingly different engineering 
problems. Several recent applications have focused on systems displaying more than one stable equilibrium 
positions and several studies have been dedicated to the understanding of the static instability and nonlinear 
dynamics of these multistable structural systems [1-3]. To prevent the loss of stability of the pre-buckling 
configuration has been for many decades the aim of structural design. However, a new research field in engineering 
has focused on structures, such as deployable structures [4], that can undergo large displacements and rotations 
without damage displaying different stable equilibrium positions, with applications beyond civil engineering, for 
example, within aerospace [5], mechanical [6] and bioengineering [7], or even, in the development of new 
materials (metamaterials) [8] and dynamical systems with a periodic pattern [9]. 

Systems with multiple stable configurations can be obtained from the most diverse structural arrangements 
[10]. Among the multistable mechanisms, the bistable structures can be highlighted, whose best-known example 
is the basic von Mises truss [11]. In addition to being simple, it can function as an isolated mechanisms or constitute 
the substructure of more complex structural systems. In this work, the static instability and the nonlinear free 
vibration of a multistable system formed by a sequence of von Mises trusses is studied. This nonlinear model can 
be suitably used in the protection of structures, vibration control, construction of self-deployable and collapsible 
structures or systems that assume many stable configurations throughout their useful life. 
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2  Problem formulation 

The analyzed structural system consists of a sequence of two von Mises trusses linked by rigid bars in such 
a way that leads to a model with multiple equilibrium configurations, as illustrated in Fig. 1, where a represents 
the height of the upper truss, b the height of the lower truss, c half length of the truss base, k1 the axial stiffness of 
upper truss, k2 the axial stiffness of lower truss, v1 the displacement of the upper truss central joint, v2 the 
displacement of the lower truss central joint and P the static load applied at the top node. 

 

Figure 1. Model with two von Mises trusses coupled 

In the undeformed configuration and after application of the load P, the length of each truss bar is given 
respectively by: 
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Considering the engineering strain (ε), and a linear, elastic material, the strain energy is given by: 
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Taking the contribution of each truss bar, the internal strain energy (U) and the gravitational potential energy 
of the applied load (V) are given by: 
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So, the total potential energy of the system (Π = U + V) is: 
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The kinetic energy is given by: 
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where the overdot represent the displacement derivative with respect to time, ρ is material density and A0 the 
undeformed cross section of the bar. 

To facilitate the parametric analysis, the following dimensionless parameters are adopted: 
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Then, the total potential energy and the kinetic energy can be rewritten in a dimensionless form as: 
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Now, using the Langrage function ( L T  ) and the Hamilton’s principle, the two nondimensional 
equations of motion takes the form: 
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where Q̅ = Q / k1 and ξ1 and ξ2 are the damping ratios. 

3  Static analysis 

3.1 Stability analysis 

The behavior of the structure can be described by the nonlinear equilibrium equations, obtained through the 
minimum potential energy criterion: 

 / 0, 1,2.id d i    (11) 

The nonlinear equilibrium paths considering the dimensionless parameters α = 1.0 and δ1 = δ2 = 0.1, Fig. 2, 
shows the typical behavior of a shallow system with six limit points (bifurcations). The critical load is λcr = 3.81 × 
10-4. The solid lines represent stable equilibrium states and dashed lines the unstable equilibrium states. At two 
limit points of the primary path an unstable symmetric bifurcation occurs simultaneously, giving rise to two 
additional paths, each with two limit points. 

a) 

 

b) 

 

c)

 

Figure 2. Nonlinear equilibrium path: a) λ × χ1, b) λ × χ2 and c) χ1 × χ2 
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3.2 Variation of the potential energy 

The total potential energy surfaces for α = 1.0, δ1 = δ2 = 0.1 and increasing static load levels are shown in 
Fig. 3. The multistable characteristic of the structural system is evident from the presence of the four potential 
wells. The unstable configurations are either saddles or maxima. 

a)

 

b)

 

c)

 

Figure 3. Potential energy variation (surface) with static load level: a) λ = 0.0 b) λ = 1.8 × 10-4 c) λ = 3.15 × 10-4 

In order to better visualize the equilibria, Fig. 4 presents the equipotential energy curves for increasing static 
load levels. The dots represent the maximum in red, the minima in blue and saddles in black. For λ = 0.0, Fig. 4a), 
four equilibrium configurations of the structural system are observed: one pre-critical, (0,0), and three pos-critical 
((2,0), (2,2) and (4,2)). There is also the presence of the five unstable configurations: one maximum point, (2,1), 
and four saddles (1.0), (1,1), (3.1) and (3.2). Figures 4b) and c) show the influence of the static load on the potential 
energy, decreasing the safe region associated with the pre-buckling equilibrium configuration. 

a)

 

b) c) 

 

Figure 4. Variation of the curves of equipotential energy with the static load level: a) λ = 0.0 b) λ = 1.8 × 10-4 c) λ 
= 3.15 × 10-4 

4  Dynamic free vibration analysis 

4.1 Natural frequentes 

Expanding the equations of motion, eq. (9) and (10), in Taylor series, retaining the linear terms and 
considering ξ1 = ξ2 = 0 and P = 0, the following eigenvalue problem is obtained: 

      2
1 2 0  where   and .

T
K M X X           (12) 

where K is the dimensionless stiffness matrix, M the dimensionless mass matrix and   is the natural frequency 
parameter. 
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Solving the eigenvalue problem, the natural frequencies and vibration modes are obtained. Table 1 illustrate 
de results for selected values of the dimensionless parameters. Analyzing the results, the fundamental mode 
associated with the lowest frequency corresponds to both trusses moving in the same direction with the same 
intensity, while the second mode leads to displacements in opposite directions, with χ1 > χ2. 

Table 1. Frequencies and associated modes 

α δ1 δ2 First ω0 Eigenvector Second ω0 Eigenvector 

1.0 0.050 0.050 0.037752317  1.0 1.0  0.098836849  3.236067987 1.236067978  

1.0 0.100 0.100 0.074943956  1.0 1.0  0.196205825  3.236067975 1.236067978  

1.0 0.050 0.051 0.038465926  1.0 1.0  0.098942698  3.271094238 1.272250849  

1.0 0.051 0.050 0.037787191  1.0 1.0  0.100700887  3.200182188 1.201377445  

0.9 0.050 0.050 0.035908370  1.0 1.0  0.098579832  3.308871405 1.208871400  

1.1 0.050 0.050 0.039489178  1.0 1.0  0.099101620  3.164158992 1.264158982  

To study the variation of fundamental frequency with the static load, it is necessary to consider that the total 
displacement (χnT) corresponds to the sum of static (χni) and dynamic (χn(t)) displacements, that is: 

 ( ) .nT n nt i     (13) 

From this change of variables and considering the displacements associated with the pre-buckling positions 
for increasing levels of static load, according to nonlinear equilibrium path (Fig. 2), the fundamental frequency is 
obtained. Figure 5 shows the nonlinear frequency-load relation, where the lowest frequency becomes zero at the 
bifurcation point. 

 

Figure 5. Variation of the natural frequency with the static load level along the pre-buckling path for α = 1.0 and 
δ1 = δ2 = 0.1 

4.2 Free vibration response 

Considering a conservative system, from eq. (7) and (8), the conservation of energy principle leads to: 

 T C    (14) 

where C is a given constant associated with the energy level for a set of initial conditions and a given static load 
level.  

Choosing a static equilibrium position, a four-dimensional phase space is obtained: χ1, χ1,τ, χ2 and χ2,τ. Figure 
6 illustrates the four cross-sections of the phase portraits for increasing energy levels and confirms the results of 
the previous analyses, including the existence of four centers and four saddles. The heteroclinic orbits connecting 
the saddles separate de different types of motion of the system, including in-well and cross-well motions. 
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a)

 

b)

 

c)

 

d)

 

Figure 6. Level energy curves with zero static load (λ = 0.0) for α = 1.0 and δ1 = δ2 = 0.1. a) χ1 × χ2, b) χ1 × χ1,τ, 
c) χ2 × χ2,τ and d) χ1,τ × χ2,τ 

However, the dissipative effect of damping must be considered and for each set of initial conditions the 
damped response will converge to one of the four coexisting attractors. Figure 7 shows the basins of attraction of 
the damped unloaded system. The yellow points represent the saddles and the white points are the attractors. The 
blue region denotes the pre-buckling basin of attraction while the black, red and green regions, the basins of 
attraction of the three pos-buckling configurations.  As the static load increases, the basin of attraction associated 
with pre-buckling equilibrium position decreases, decreasing its dynamic integrity, and most initial conditions are 
connected to the green basin, the post-buckling equilibrium position where the two trusses are in an inverted 
position. 

a)

 

b)

 

c)

 

Figure 7. Basins of attraction for α = 1.0 and δ1 = δ2 = 0.1. a) λ = 0.0 b) λ = 1.8 × 10-4 c) λ = 3.15 × 10-4.  
The attractor’s coordinates are: a) (0.00, 0.00), (2.00, 0.00), (2.00, 2.00), (4.00, 2.00), b) (0.22, 0.11), (2.19, 

0.11), (2.19, 2.08), (4.16, 2.08) and c) (0.47, 0.24), (2.37, 0.24), (2.37, 2.13), (4.27, 2.13) 
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5  Conclusions 

This work illustrates the complex static behavior of multistable systems. Due to the geometric nonlinearity 
and to the fact that each truss exhibit two stable equilibrium positions, the proposed structural system exhibit both 
limit point and unstable symmetric bifurcations, leading to three equilibrium paths and four coexisting stable 
solutions. The influence of the static load is demonstrated by the significant changes in the four potential wells, 
equipotential energy curves and basins of attraction. The evolution of the potential energy and basins of attraction 
reveal the great sensitivity of the pre-buckling equilibrium configuration to the static load levels. Future work will 
include the nonlinear dynamic behavior of this model to assess its safety. 
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