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Abstract. The nonlinear vibrations of a simply supported cylindrical shell made by a functionally graded material 

with a circumferentially discontinuous elastic base is analyzed. The equilibrium equations are obtained from 

Donnell's nonlinear shallow shell theory. The modal solution to the transversal displacement field, used to 

discretize the equilibrium equations, is obtained by perturbation techniques. The discretized equations are 

analyzed, considering a harmonic excitation in the form of the combination of the lowest vibration modes of 

cylindrical shell. The chosen geometry of the cylindrical shell presents natural frequencies nearly commensurate 

to an internal resonance 1:1:1:1, due to the discontinuity of the elastic base in the circumferential direction. The 

nonlinear dynamic behavior is analyzed from the resonance curves that they are obtained by the continuation 

method and the basins of attraction. Several resonance peak regions are observed, due to the interaction between 

the modes of the transversal displacement field, showing the competition of multiple stable, quasi -periodic and 

chaotic solutions. Time responses, phase portraits and Poincaré sections are also used to understand the nonlinear 

dynamic behavior of the cylindrical shell. 
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1  Introduction 

Structural mechanics of cylindrical shells is an important topic in engineering field with several studies 

considering the interaction between an elastic foundation and the cylindrical shell [1, 2]. However, a few works 

focus on cylindrical shells with circumferentially discontinuous elastic base. Important works in this field has been 

done by Amabili and Dalpiaz [3] and Tj et al. [4, 5] which investigate the linear vibrations. On the other hand, 

Nejad and Bideleh [6], Rodrigues [7] and Silva et al. [8] present an analysis of the nonlinear vibrations considering 

the discontinuity of the elastic base either on circumferential or longitudinal direction of cylindrical shell. It is 

found in the literature that, depending on the type of discontinuity of elastic base, the forced nonlinear vibrations 

in the system are higher than the nonlinear vibrations of a cylindrical shell with a continuous elastic base [7, 8]. 

So, based on previous work [9], this work deduces a reduced order models through a perturbation method to 

evaluate the global stability of a cylindrical shell resting on a circumferentially discontinuous elastic base. The 

obtained results show a complex behavior of forced response of shell with several bifurcations points and a strong 

competition between several dynamical attractors. 

2  Problem formulation 

The derived mathematical model considers a simply supported cylindrical shell on a discontinuous elastic 

base delimited by θE and θD. The geometry of structure is a perfect cylindrical shell with constant radius R, 

thickness h, where h << R, and length L. Figure 1(a) shows the cylindrical shell’s geometry and its coordinates 

axes x, 𝜃 and z which are related to axial (u), circumferential (v) and transversal (w) displacement fields, 
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respectively. Figure 1(b) illustrates the origin of cylindrical coordinate axis and the open angles θE and θD of elastic 

base. The shell is composed of a functionally graded material based on two materials A and C, which varies in the 

direction of thickness h and obeys a sandwich distribution where the physical parameters E, 𝜌 and 𝜈 are given by: 
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where PA and PC are the properties of materials A and C, respectively, VA(z) is the sandwich function and N is the 

exponent of the graded function. 

 

  

(a) (b) 

Figure 1. Shell characteristics (a) geometry and (b) circumferential discontinuity of elastic base. 

Donnell’s nonlinear shallow shell theory is considered to obtain the nonlinear kinematic equations, as shown 

in eq. (2), which are described in terms of internal membrane forces and bending moments as:  
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where η1 is the viscous damping, ω0 is the natural frequency of cylindrical shell and ρ1 is the average density of 

the material distributed in the thickness of the shell. 

In eq. (2) P is the lateral harmonic force and PB is reaction of elastic base, assumed as a Winkler model, 

which are given by: 
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where PL is force amplitude, m is the number of half-waves in the longitudinal direction, ω1 is the frequency of 

excitation of the lateral pressure and t is the time. In eq. (4) KW is the stiffness modulus of the elastic base which 

obeys KW=KnWA11/R2, being KnW
 the nondimensional parameter of stiffness of elastic base, A11 the membrane 

stiffness of elastic constitutive matrix and H(  ) the Heaviside function to accomplish the circumferential 

discontinuity. 

The internal forces - Nx, Nθ and Nxθ - and moments  - Mx, Mθ, Mxθ  -described in eq. (2) are given in terms of 

deformations field and curvatures of the mid-surface of cylindrical shell, as given by: 

E D

0
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where Aij, Bij, Cij (i,j = 1, 2, 6) are the terms of the elastic constitutive matrix that consider the effect of functionally 

graded material and the physical parameters, E, ρ and ν are described in eq. (1). 

To obtain the reduced-order model and following numerical results, a consistent numerical procedure, 

derived by Pereira et al [9], is applied where the transversal field displacement is obtained by perturbation 

techniques. The axial and circumferential field displacements is described as a function of transversal displacement 

field [10]. However, in this work an analysis considering a full model will be derived considering all basic modes 

of vibration mode. As shown in Amabili and Dalpiaz [3], a great number of terms is necessary to describe the 

transversal displacement in Fourier series to ensure the convergence of linear vibration mode of a cylindrical shell 

with circumferential discontinuity in its elastic base, but as observed by Pereira et al [9] to achieve nonlinear 

dynamics of cylindrical shell this consideration demands a lot of computational effort. 

Then, to ensure only the most important modes on vibration mode, reduced order model is derived to describe 

the nonlinear dynamic behavior of a FG cylindrical shell. From a FEM software, a strategy to obtain the vibration 

mode of a cylindrical shell resting on a discontinuous elastic base is conducted. Thus, the main terms of a linear 

vibration mode are obtained from application Fourier transform on the results of the Abaqus® FEM software. So, 

for the quantification of the participation of each modal expansion, the Parseval theorem is applied as show in eq. 

(6), where the transversal velocity field is analogous to the transversal displacement field. Then, it is established 

the relation of kinetic energy of shell and the terms of Fourier transform, where ω0 is the natural frequency of the 

shell and F(iω) is the amplitude of the frequency obtained by the Fourier transform. 
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To obtain the main terms through the FEM model, we use 2500 shell elements (S4R) and consider a simply 

supported perfect cylindrical shell with radius R=0.6 m, length L=0.6 m, thickness h=0.003 m and θD=-θE=22.5º. 

The shell is composed of the following materials: steel, called material A, and a ceramic material, called material 

C. The properties of these materials are: EA= 205.1 × 109 N/m2, ρA= 8900 kg/m3, νA= 0.31, EC= 322.3 × 109 N/m2, 

ρC= 2370 kg/m3 and νC= 0.24. 

Expanding the transversal vibration mode, obtained from FEM software, in Fourier series, it can obtain two 

uncoupled vibration modes as presented in Fig. 2 where Fig. 2(a) shows the “cosine modes” and Fig. 2(b) illustrates 

the “sine modes”. In this work, we named the vibration mode as “cosine modes” and “sine modes” according to 

the used functions to expand the vibration mode in Fourier series. 

 

 
(a) “cosine modes” 

 
(b) “sine modes” 

Figure 2. Representation of the expanded modes in Fourier series that give the uncoupled vibration mode 
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Figure 3 presents the frequency spectrums obtained from FFT with its cumulative energy in frequency 

domain for both “cosine modes” and “sine modes”, considering different values for stiffness of elastic base. It is 

observed in Fig. 3 that the main terms of Fourier series are the same for both “cosine modes” and “sine modes” 

(ω =8, ω =9) where the cumulative kinetic energy represents 80% and 85% total kinetic energy, respectively. So, 

it can conclude the region 7 < ω < 10 contains the main modes to describe the vibration mode of cylindrical shell, 

independently of the evaluated stiffness of elastic base. 

 

 
(a) FFT - “cosine modes” 

 
(b) Cumulative energy - “cosine modes” 

 
(c) FFT - “sine modes” 

 
(d) Cumulative energy - “sine modes” 

Figure 3. Frequency spectrum and cumulative energy in frequency domain. (a), (c) “Cosine mode” and (b), (d) 

“Sine mode”. (― KnW = 0.003, ― KnW = 0.015, ― KnW = 0.03, ― KnW = 0.06 and ― KnW = 0.12) 

Then, the considered seed solution for perturbation method [7-10] is given by: 
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where q = mπ, ξ =x/L, with 0 ≤ ξ ≤ 1, m = 1 and coefficients WC, WS are amplitudes related with “cosine modes” 

and “sine modes”, respectively. Then, using the seed solution of eq. (7), the modal solution for transversal 

displacement field was derived by perturbation method, where all degrees of freedom arises from the modal 

couplings of the quadratic and cubic terms and, which in its turn, are present in the nonlinear equilibrium equation, 

are shown in eq. (8), being τ = tω0. 
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where C2 = {0, 1, 16, 17, 18}, C3 = {7, 8, 9, 10, 24, 25, 26, 27}, C4 = {0, 1,2, 15, 16, 17, 18, 19, 32, 33, 34, 35, 

36} are a set of circumferential modal modes for respectively, second, third and fourth order of perturbation 

method in circumferential direction of cylindrical shell. 

To obtain a consistent system of displacements fields in the u and v directions, with their appropriate modal 

couplings. The procedure detailed in Gonçalves et al. [10] was applied to obtain the displacement fields u and v, 

eqs. (9) and (10), where equations of displacements field satisfies boundary conditions of a simply supported 

cylindrical shell that are given by: 

 0 at ; , 0 at 0, .
2

L
u x v w x L= = = =   (11) 

From nonlinear equations of eq. (2), a standard Galerkin procedure is applied to discretize the partial 

differential equations. Its observed that amplitudes UC, US, VC and VS assemble a linear system that depends of the 

modal transversal amplitude WC and WS. Thus, a nonlinear system of second-order equations in relation to τ written 

only in terms of WC and WS can be obtained [10]. 

3  Numerical results 

To obtain the numerical results, the physical and geometric parameters are the same that were defined in the 

previous section. The nondimensional stiffness value of the elastic base is KnW = 0.003 and viscous damping is 

η1 = 0.001. To describe lateral harmonic pressure, the seed solution for perturbation method is used as follows: 
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where P8
C, P8

S, P9
C and P9

S are a 0-1 factor that directly excites the basic modes of the seed solution, ω1 is the 

excitation frequency and PL = 5000 N/m² is the amplitude of the lateral pressure. In following numerical results of 

forced response, P(t) excites the main mode of lowest natural frequency of cylindrical shell which occurs for 

vibration mode (m, n) = (1, 8) in “cosine mode”. Thus, it is considered P8
C = 1 and P8

S = P9
C = P9

S = 0. 

Figure 4 shows a comparison of the nonlinear resonance curve obtained from the full model for displacements 

fields, developed in this work, and from an uncoupled model for displacements fields given by Pereira et al [9], 

which used as seed solution for perturbation method the “cosine modes” or the “sine modes” to describe the linear 

vibration mode of cylindrical shell. The resonance curves were obtained through a brute force method where it is 

observed that all models present softening behavior. However, Figs. 4(c) and (f) show a new path of solution arise 

in full model with a chaotic behavior in the resonance region. This behavior does not occur in the uncoupled 

models of Pereira et. al [9], Figs. 4(a), (b), (d) and (e). It is important to note that the secondary peak on resonance 

curve is maintained in all analyzed models, in the same way, the competition between periodic and quasi-periodic 

solutions are observed in both models. 

Figure 5 shows the basins of attraction – BoA - for full model considering two excitation frequencies: ω1/ω0 

= 0.92 in Fig. 5(a) and ω1/ω0 = 1.10 in Fig. 5(c). Also, the phase-portrait for all identified dynamical attractors for 

both BoA are shown in Fig. 5(b) and (d). It can observe in Figs. 5(a) and (c) that BoA presents a large fractal 

domain in both projection’s planes, indicating a high sensibility of the structural system to initial conditions. For 

ω1/ω0 = 0.92, near to main resonance peak, Fig. 5(a), the uncoupled solution dominates the BoA while, near to the 

second resonance peak, Fig. 5(c), the coupled solutions taken this place.  
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(a)  (m, n) = (1,8) “cosine modes” [9] 

 
(b)  (m, n) = (1,8) “cosine modes” [9] 

 
(c) (m, n) = (1,8) “full model” 

 
(d) (m, n) = (1,9) “sine modes” [9] 

 
(e)  (m, n) = (1,9) “sine modes” [9] 

 
(f) (m, n) = (1,9) “full model” 

Figure 4. Resonance curves for a simply supported shell resting on elastic base with circumferential 

discontinuity for three seeds of perturbation method. 

 
(a) ω1/ω0 = 0.92 – “full model” 

 
(b) ω1/ω0 = 0.92 – “full model” 

 
(c) ω1/ω0 = 1.10 – “full model” 

 
(d) ω1/ω0 = 1.10 – “full model” 

Figure 5. Basins of attraction and phase-portrait with Poincare map for a simply supported shell resting on elastic 

base with circumferential discontinuity using the full model for perturbation method. 
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4  Conclusions 

In this paper, we studied the nonlinear vibrations of the shell with a circumferential discontinuity through the 

frequency-response curve and basins of attraction. The low dimensional model was derived, considering all 

coupling modes in perturbation method. An investigation of the influence of these basic modes was discussed. 

Resonance curves for nonlinear forced vibrations showed that the consideration of the basic modes changed the 

behavior of nonlinear oscillations of non-resonant path from stable to unstable solutions. The full model did not 

change the softening behavior of resonance curves as observed in the peak of resonance and quasi-periodic 

solutions. 
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