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Abstract. Over the past decades, a variety of applications of multistable structures has appeared in different 
branches of engineering. Among the structures exhibiting multistability, metamaterials, formed by a sequence of 
structures able to undergo large displacements and deformations without presenting damage, thus being able to 
assume different equilibrium positions, are investigated in the current literature. Many of these structures display 
a nonlinear behavior with limit point instability, allowing the structure to jump between various stable equilibrium 
positions and thus present a reversible hysteretic behavior. Among the materials used in this type of structure are 
hyperelastic materials. In this work, the behavior of hyperelastic arches obtained from buckled columns in a post-
buckling configuration, under transversal loads, is studied; a bistable structural unit typical of metamaterials. To 
understand the nonlinear behavior of these structures, a finite element model is used by means of the Abaqus 
software that allows specifying several constitutive laws commonly used for hyperelastic materials. To obtain non-
linear equilibrium paths, the Riks method is applied. A parametric analysis of the nonlinear behavior of the arch 
shows the influence of the geometry of the arch (height-to-span ratio and thickness), self-weight and load 
imperfections on the nonlinear equilibrium paths, load capacity (critical load) and stored energy of the structure. 

Keywords: Incompressible material, hyperelastic prestressed arch, instability, snap-through, finite element 
analysis. 

1  Introduction 

The study of the multistability of arch-shaped structures has received new interests in recent decades due to 
their new applications in different fields of engineering, such as mechanical metamaterials [1-3], vibration control 
[4,5] and morphing applications through bistable mechanisms [6-8], among others. A review of the state of the art 
in exploring multi-stability in structures formed by metamaterials and their structural transitions is presented by 
Kochmann and Bertoldi [9]. In most of these applications, the structural element is subjected to large deformations, 
and it is often important to consider in its formulation or modeling, materials capable of undergoing large elastic 
deformations. Under these conditions, the use of hyperelastic materials finds an important field of application. The 
hyperelasticity of the material increases the deformation capacity of structure, leading to new deformations at the 
section level [10] and, consequently, new equilibrium trajectories accompanied by limit point instability with 
multiple self-equilibrated load-free configurations and a complex potential energy landscape [11]. 

In this work, the behavior of hyperelastic arches obtained from columns in a post-buckling configuration, 
under transversal loads, is studied; a bistable structural system typical of metamaterials. To understand the 
nonlinear behavior of these structures, a finite element model is used by means of the Abaqus Unified FEA [12] 
using an incompressible Mooney-Rivlin model obtained from experimental uniaxial tests of a rubber-like material. 
To obtain non-linear equilibrium paths, the Riks method [13] is applied. A parametric analysis of the nonlinear 
behavior of the arches shows the influence of boundary conditions, different cross-sections, self-weight and load 
imperfections on the nonlinear equilibrium paths and stability of the structure, highlighting some key features of 
this class of structures. 
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2  Problem and analysis 

Consider a hyperelastic column of rectangular cross-section with base B and height H, undeformed length, 
L, and clamped or pinned at both ends. After being subjected to buckling by an imposed horizontal displacement, 
δ, it takes the form of a pre-stressed arch, as illustrated in Figure 1. Then it is subjected to an incremental vertical 
load (P) applied at the top of the arch. The pinned arch has an initial rotation  at the support. The resulting arch 
has a height h and a span (L- δ), as shown in Table 1, considering L=450mm. 
 

     (a) (b) 

  

Figure 1. Hyperelastic prestressed arches with (a) clamped and (b) pinned supports. 

Table 1. Arch geometry (L=450mm) 

Support δ (mm) h (mm) θ (degrees) 

clamped 
10 34.14 0 
30 67.89 0 
50 88.70 0 

pinned 
10 40.09 16.40 
30 70.92 29.42 
50 90.90 38.38 

 

 

2.1 Uniaxial tests of a rubber-like material 

The columns are made of an incompressible elastomer with physical properties obtained experimentally. The 
elastomer has density of 1480 kg/m³. Hyperelastic incompressible materials are highly nonlinear, with different 
behaviors under tension and compression, and their constants depends on the proportion of the constituent elements 
and fabrication process. Its mechanical properties are determined through a series of uniaxial tensile and 
compression tests, as illustrated in Fig. 2(a), conducted at the Civil Engineering Department material and structures 
laboratory (LEM) of PUC-Rio. 

The experimental results of the nominal stress (σeng) as a function of the principal axial stretch (λ1) are shown 
in Figure 2(b). The material constitutive equation is obtained by a fitting process using the Abaqus Unified FEA 
software considering a deformation domain whose limit is the maximum deformation levels that the structures are 
submitted to in the numerical analysis. The best fit was obtained for the Mooney-Rivlin hyperelastic model (MR). 
The Mooney-Rivlin strain energy density function for an incompressible material is written in terms of the first 
and second strain invariants, 𝐼ଵ and 𝐼ଶ, which can be expressed as a function of the principal stretch ratios of the 
structural element, 𝜆, and the material constants 𝐶ଵ and 𝐶ଶ [10,14]: 

 
𝑊 = Cଵ(𝐼ଵ − 3) + Cଶ(𝐼ଶ − 3). (1) 

 
The Mooney-Rivlin constitutive model is widely used for rubber within a moderate strain range (up to 200%) 

as those observed during the numerical analysis [14]. The experimental parameters here obtained are equal to 
C1=0.3734 MPa and C2=0.1726 MPa. 
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Figure 2. (a) Tensile and compression tests and (b) model fitting 

2.2 Finite element model 

The column was modeled using the Abaqus Unified FEA [12]. A 3-node quadratic Timoshenko beam element 
(B22) is adopted to model the beam. The problem is modeled in two steps. In the first one, assuming a small initial 
imperfection in the shape of the first buckled mode of the clamped and pinned beam, the delta displacement (δ) is 
applied to the beam tip (Figure 1) and, in the following step, the nonlinear response and stability analysis of the 
buckled beam is performed through the Riks method [13].   

2.3 Results and discussion 

The arch non-linear behavior when subjected to transversal loads depends on the shallowness parameter 
defined as the height-to-span ratio, leading to different instability phenomena along their primary equilibrium path, 
namely: symmetric bifurcation or limit point instability. These instability phenomena divide these structures in 
two classes: non-shallow (deep) arches and shallow arches [15], respectively. These structures are commonly 
adopted in the design of metamaterials and bistable applications where the snap-through phenomena allow the 
structure to jump dynamically from one to another equilibrium position storing or releasing energy. Consider a 
prestressed arch with clamped supports, L=450 mm, B=43.72 mm and H=21.79 mm, subject to three initial 
displacement, respectively δ=10, 30, 50 mm. Their nonlinear equilibrium paths are shown in Fig. 3a. 

As shown in Fig.3a, as the load increases, the arch effective stiffness decreases due to the softening geometric 
nonlinearity of the structure. Upon reaching the critical load, the effective stiffness becomes zero and then, under 
any load increment, the compressed arch jumps to an inverted equilibrium position where it is subjected to traction. 
For δ=10 mm (very shallow arch) there are 3 self-equilibrated load-free configurations, as delta increases the 
structure presents an increasing number of self-equilibrated load-free configurations due to an increasing number 
of loops. Two positions are always stable (minima), and the others are unstable (saddles or maxima). These points 
are clarified in Fig. 3b where the variation of the load (in blue) and the strain energy (in black) with the central 
deflection are shown for δ=50 mm. The five symmetrical self-equilibrated load-free configurations are shown inset 
in black. The critical configuration is also illustrated in green. Unstable positions and those close to them are 
configurations of high energy under null or low force, making these positions highly indicated for storing energy. 

The equilibrium paths of the arch with pinned supports are more complex with several loops and self-
equilibrated load-free equilibrium positions. Figure 4 shows the equilibrium paths and the self-equilibrated 
positions for the pinned prestressed arch (B=43.72 mm, H=21.79 mm) for different axial displacements . 
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Figure 3. Clamped prestressed arch (L=450 mm, B=43.72 mm, H=21.79 mm): (a) equilibrium paths (δ=10, 
30, 50 mm); (b) load (blue) and strain energy (black) versus vertical displacement (δ=50 mm). 

For the smallest  value, δ=10 mm, the structure has five self-equilibrated load-free configurations (in black 
in Fig. 4b) and upon reaching the critical load (green curve in Fig. 4b) jumps to its stable post-critical position. As 
 increases the complexity of the equilibrium path increases and the reaches up to eleven self-equilibrated load-
free configurations for δ=50 mm (Fig. 4(c)). Figs. 4(c,d) show the characteristic shape of the critical configuration 
in green. Close to the supports, the structure moves upwards instead of downwards. However non-shallow arches 
lose stability due to an unstable symmetric bifurcation before the limit point is attained. 
 

 

Figure 4. (a) Equilibrium paths (δ=10, 30, 50 mm); (b), (c), (d) self-equilibrated load-free and critical 
configurations of pinned prestressed arch (L=450 mm, B=43.72 mm, H=21.79 mm) for δ=10, 30, 50 mm, 

respectively. 

Rubber-like materials have lower values for Young's modulus to density ratio than other materials and it is 
important to include their self-weight in the structural analysis. Figure 5 shows the equilibrium paths for the 
clamped prestressed arch with δ=50 mm. The inclusion of the self-weight reduces the load capacity of the structure 
by 35%, as shown by the curve in black when compared to the ideal case without considering self-weight in gray. 
The loss of stability is by limit point due to the inherent symmetry of the system. When self-weight and load 
imperfection (considering an eccentricity at the load application point of 5 mm to the left of the symmetry point) 
the load capacity is reduced by 66% when compared to the ideal case without considering self-weight. This 
eccentricity causes the complete loss of structural symmetry, as illustrated in the equilibrium and critical 
configurations shown respectively in black and green inset in Fig. 5. Another interesting feature of rubber-like 
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materials is their high flexibility, which allows the elastomer arches to be subjected to higher levels of elastic 
deformation than conventional structures without any damage, enabling the structure to jump to an inverted 
position in the elastic regime, which cannot usually occur for structural material such as the steel arches tested by 
Neville et al [16, 17], unless they are extremely slender and shallow. Figure 6 shows the influence of boundary 
conditions, section height (different values of H/B), self-weight and load imperfections on the critical buckling 
load.  It is observed that the H/B ratio, that is, the slenderness of the cross-section, has a significant influence on 
the load carrying capacity, which increases as H/B increases. In each case, the consideration of self-weight and 
self-weight plus load imperfections causes, as illustrated in Fig. 5, a decrease in the load carrying capacity. This 
shows that self-weight must be always included in the analysis of these structures and that they exhibit a significant 
imperfection sensitivity. Thus, the effect of imperfections must be considered with care in their analysis and design. 

 
 

  

Figure 5. Effect of load imperfection and self-weight 
on the equilibrium paths (L=450 mm, B=43.72 mm, 

H=21.79 mm, δ=50 mm). 

Figure 6. Effect of load imperfection and self-
weight on critical load (L=450 mm, B=43.72 mm, 

H(variable)). 

3  Conclusions 

This article examines the bistable behavior of a hyperelastic arches. Fabrication and testing of a rubber-like 
material were conducted to identify the material physical properties and the best constitutive model. A parametric 
analysis of arches under transversal load was performed by varying its section height, height-to-span ratio, and 
boundary conditions using the Abaqus Unified FEA, highlighting the key features to understand the mechanical 
behavior of the arches in multistable applications. The clamped and pinned arches analyzed here exhibit a 
mechanical behavior that defines the upper and lower bounds of a typical unit. The parametric analysis carried out 
here also show that self-weight and load imperfections have a significant influence on the bistable behavior and 
load capacity of rubber-like structures. Thus, the presents results allow to understand the real non-linear behavior 
of the hyperelastic structures used in bistable applications. Future work will include the experimental analysis of 
the clamped and pinned hyperelastic arches. 
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