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Abstract. In this work, the influence of geometry on the dynamic instability of clamped-free cylindrical shells 

subjected to lateral harmonic loads is studied. For this, to model the shell the Koiter – Sanders is considered, and 

the Rayleigh-Ritz method is applied to obtain a set of non-linear dynamic equations which are solved in turn by 

the fourth order Runge-Kutta method. A detailed study is performed to evaluate the correct nonlinear coupling of 

field displacements. To study the dynamic instability, a model with eighteen degrees of freedom is considered and 

the resonance curves are obtained for three different shell geometries. It is possible to observe that, depending on 

the geometry ratios, the shell will display softening, hardening, chaotic or quasi-periodic oscillations. 
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1  Introduction 

Cylindrical shells have been largely applied in several engineering branches due to its high capability to 

strength external and internal forces. In literature, there are many works related to linear and nonlinear analysis of 

simply supported cylindrical shells but, for clamped-free boundary conditions, the number of works is very scarce. 

Linear vibrations of clamped-free cylindrical shell have been studied in previous works [1-3] but, for nonlinear 

vibrations there is a reduced number of works, among them, it can be mentioned the work of Chiba [4,5] who 

studied experimentally the nonlinear free vibrations of polyester shells and the work of Kurylov and Amabili [6] 

who, using the Chebyshev polynomials to expand the displacement fields, studied the forced nonlinear vibrations 

of clamped-free cylindrical shells. The main difficulty in all studies is to find the correct expansions to discretize 

the fields displacements for nonlinear analysis. 

In this work the free and forced nonlinear vibrations of clamped-free elastic cylindrical shells subjected to 

lateral harmonic load are studied. To model the shell, the Koiter-Sanders nonlinear theory is applied to obtain the 

strain energy. The field displacements are described by double trigonometric series in both longitudinal and 

circumferential directions and natural boundary conditions are satisfied. The Rayleigh-Ritz method is applied to 

obtain a set of nonlinear dynamic equilibrium equations which are, in turn, solved using the fourth order Runge-

Kutta method. A convergence study is developed to obtain the field displacement expansion which describe 

softening behavior of the frequency-amplitude relation involving 18 to 30 dof. Numerical results are compared 

with literature and a parametric study is developed to study the influence of geometry on the resonance curves. 

2  Mathematical Formulation 

Consider a perfect clamped-free elastic cylindrical shell with radius R, thickness h, length L, density , Young 

modulus E and Poisson coefficient  and subjected to a lateral harmonic load 𝐹(𝑡) = 𝑞𝑟𝛿(𝑅𝜃 − 𝑅𝜃̅)𝛿(𝑥 −

𝑥̅)cos⁡(Ω𝑡) with amplitude qr acting at point 𝜃̅ and 𝑥̅ as seen in Fig. 1. The field displacements of the middle 

surface of the shell are in the axial 𝑢(𝑥, 𝜃, 𝑡), radial 𝑣(𝑥, 𝜃, 𝑡) and lateral 𝑤(𝑥, 𝜃, 𝑡) directions, respectively where 

x and  are the axial and radial coordinates and t is the time. 
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Figure 1. Geometry and coordinates of cylindrical shell. 

The strain relations of the cylindrical shell can be written as 𝜀𝑥 = 𝜀𝑥,0 + 𝑧𝑘𝑥, 𝜀𝜃 = 𝜀𝜃,0 + 𝑧𝑘𝜃 , 𝛾𝑥𝜃 = 𝛾𝑥𝜃,0 +

𝑧𝑘𝑥𝜃 where z is the distance of the arbitrary point of the shell from the middle surface.  

The middle surface strain–displacement relations, changes of curvature and torsion according to Sanders–

Koiter nonlinear shell theory are given by: 
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The elastic strain energy, neglecting z for plane stress, is given by [2] 
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where stress-strain relations are given by: 
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The kinetic energy, considering only translational inertia, is given by: 
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The work of external forces is: 
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where qx, q and qr are the distributed external loads in lateral, circumferential and radial directions. 

 Finally, the work of nonconservative forces is: 
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where c is the viscous damping coefficient. 

 The field displacements can be expanded as: 
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where m is the axial half-wave number, n is the circumferential wavenumber, subscript d refers to driven 

mode and subscript c refers to companion mode. 

 The boundary conditions of a clamped-free cylindrical shell are given by: 

𝑢 = 𝑣 = 𝑤 =
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Substituting the field displacements of Eq. (10) in Eq. (14), the set of nonlinear equations of dynamic 

equilibrium can be obtained. 
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where 𝑞𝑖 = [𝑢1,0, 𝑢2,0, . . . , 𝑢1,𝑛,𝑑, 𝑢2,𝑛,𝑑, . . . , 𝑣1,0, 𝑣2,0, . . . , 𝑣1,𝑛,𝑑 , 𝑣2,𝑛,𝑑 , . . . , 𝑤1,0, 𝑤2,0, . . . , 𝑤1,𝑛,𝑑, 𝑤2,𝑛,𝑑, . . . ]. 

3  Numerical Results. 

Consider a clamped-free cylindrical shell with Young’s modulus E=4.65e9 N/m2, density = 1400 kg/m³ and 

Poisson coefficient = 0.38. Three shell geometries were selected to study its influence on the nonlinear vibrations 

and Table 1 displays these geometries and geometric ratios. First, in order to obtain the natural frequencies of each 

geometry, a linear free vibrations analysis was performed considering the following field displacements (without 

companion mode) 𝑢 = (1,0) + (2,0) + (3,0) + ⋯+ (1, 𝑛) + (2, 𝑛) + (3, 𝑛) +⋯, 𝑣 = (1,0) + (2,0) + (3,0) +

⋯+ (1, 𝑛) + (2, 𝑛) + (3, 𝑛) + ⋯ and 𝑤 = (1,0) + (2,0) + (3,0) + ⋯+ (1, 𝑛) + (2, 𝑛) + (3, 𝑛) +⋯. Table 1 

shows also the obtained natural frequencies and both axial and circumferential wavenumber of each geometry. 

Shell geometry 01 can be compared with previous results from Kurylov and Amabili [6] who obtained (m= 1, n= 

7) with  = 177.8 rad/sec which means that selected field displacements agree with literature. 

Table 1. Selected shell geometries. 

Geometry L (m) R (m) h (mm) L/R R/h  (rad/sec) (m,n) 

01 0.48 0.24 0.254 2.0 944 179.165 (1,7) 

02 0.72 0.24 0.300 3.0 800 130.728 (1,6) 

03 0.24 0.24 1.200 1.0 200 757.200 (1,7) 

 For the nonlinear analysis of the shell, the correct field displacements showing the coupling and modal 

interaction displaying softening behavior should be considered. For this, thirteen field displacements without 

considering the companion mode were selected and the frequency-amplitude relation of each model was obtained, 

these field displacements are showed in Table 2. 

 Figure 2 depicts the normalized frequency-amplitude relations of Geometry 1. As can be observed, 

depending on the field displacements, the shell will display hardening or softening behavior and as well know, 

cylindrical shells show softening behavior. Models named 18, 20, 24 and 28 dof display hardening behavior and 

models named 18a, 20a, 21, 22a, 24a, 26, 25 and 30 dof display softening behavior then, for this work, the smallest 

model 18a will be considered in the nonlinear vibration analysis. 
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Table 2. Selected field displacements 

Model Modal expansion 

18 dof: 𝑢 = 𝑤 = ⁡(1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛), 3⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛);  

20 dof: 𝑢 = 𝑤 = ⁡(1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛), 4⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛); 

22 dof: 𝑢 = 𝑤 = ⁡(1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛), 5⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛); 

24 dof: 𝑢 = 𝑤 = ⁡(1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛), 6⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛); 

28 dof: 𝑢 = 𝑤 = ⁡(1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛), 8⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (3, 𝑛), (3,2𝑛); 

24a dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (3, 𝑛), (3,2𝑛), 3⁡𝑎𝑥𝑖 and 

𝑣 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), (3, 𝑛), (3,2𝑛); 

26 dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (3, 𝑛), (3,2𝑛), 4⁡𝑎𝑥𝑖 and 

𝑣 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), (3, 𝑛), (3,2𝑛); 

27 dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), (3, 𝑛), (3,2𝑛), (4, 𝑛), 3⁡𝑎𝑥𝑖; and 

𝑣 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), (3, 𝑛), (3,2𝑛), (4, 𝑛); 

18a dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), 3⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛); 

20a dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), 4⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛); 

22a dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), 5⁡𝑎𝑥𝑖 and 𝑣 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛); 

21 dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (1,3𝑛), (2, 𝑛), (2,2𝑛), 3⁡𝑎𝑥𝑖 and 

𝑣 = (1, 𝑛), (1,2𝑛), (1,3𝑛), (2, 𝑛), (2,2𝑛); 

30 dof: 𝑢 = 𝑤 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), (3, 𝑛), (3,2𝑛), (4, 𝑛), (4,2𝑛), 3⁡𝑎𝑥𝑖 and 

𝑣 = (1, 𝑛), (1,2𝑛), (2, 𝑛), (2,2𝑛), (3, 𝑛), (3,2𝑛), (4, 𝑛), (4,2𝑛) 

where axi represents the axisymmetric modes i.e. (1,0), (3,0), (5,0), (7,0), (9,0), etc. 

 

 
Figure 2. Frequency-amplitude relations for selected field displacement expansions. 

 

 Now, the nonlinear forced vibration analysis will be considered, for this, as previously indicated the shell 

is subjected to a concentrated lateral harmonic radial load 𝐹(𝑡) = 𝑞𝑟𝛿(𝑅𝜃 − 𝑅𝜃̅)𝛿(𝑥 − 𝑥̅)cos⁡(Ω𝑡) acting at point 

𝜃̅ = 0 and 𝑥̅ = 𝐿/2, the damping factor is  = 0.001. The resonance curves for varying frequency of lateral load 

will be plotted which were obtained using the force brute method and 1 = /o. First, Figure 3 displays the 

resonance curve fr increasing levels of load amplitude of Geometry 1 and compared with results from Kurylov 

and Amabili [6] and Chiba [4], as can be seen, the resonance curves show stronger softening behavior that curves 

obtained by Kurylov and Amabili [6] and are closer to experimental results obtained by Chiba [4]. The difference 

between results from this work and Chiba can be due to the necessity to consider more terms in modal expansion 

or initial geometric imperfections.  

Figure 4 displays the resonance curves of Geometry 1, which is a taller shell, for increasing values of 

amplitude of radial load (qr). As can be observed for qr = 0.002 N the shell displays almost linear behavior but, 

when the amplitude of the load is increased to qr = 0.003 N, the shell starts to show softening behavior with a small 

jump at dynamic instability point. If qr = 0.004 N the shell shows softening behavior with a path for large 1T 

oscillations and after, a region with coexistence of chaotic and stable 1T vibrations. Also, close to 1 = 1.005 there 

is a point where chaotic oscillations occur. When qr = 0.005 N the shell shows softening behavior with large 
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vibrations as well as a large region of coexistence of both periodic and chaotic vibrations and another region with 

chaotic oscillations at 1 = 1.002. Now, when the load goes to qr = 0.007 N and qr = 0.008 N there is a complete 

changing of behavior because there is small softening but a jump to a path with 1T periodic oscillations as well as 

the coexistence of small and chaotic oscillations and a window with chaotic oscillations at 1 = 1.0025. 

 

Figure 3. Comparison of resonance curves. 

(a) (b) (c) 

(d) (e) (f) 

Figure 4. Resonance curves of Geometry 1 without companion mode: (a) qr= 0.002 N; (b) qr= 0.003 N; 

(c) qr= 0.004 N; (d) qr= 0.005 N; (e) qr= 0.007 N; (f) qr= 0.008 N. 

Now, for Geometry 2, Figure 5 depicts the resonance curves for increasing values of lateral load amplitude. 

In this case the effect of geometric relations become significant because for qr = 0.002 N and qr = 0.003 N the shell 

display linear behavior but for qr = 0.004 N it starts to display softening behavior. For qr = 0.005 N there the shell 

shows softening behavior with large amplitude oscillations and no chaotic vibrations and, if qr = 0.007 N and 

qr = 0.008 N and the shell shows also softening behavior but also a nonlinear path with hardening large amplitude 

vibrations. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5. Resonance curves of Geometry 2 without companion mode: (a) qr= 0.002 N; (b) qr= 0.003 N; 

(c) qr= 0.004 N; (d) qr= 0.005 N; (e) qr= 0.007 N; (f) qr= 0.008 N. 

 

(a) (b) (c) 

(d) (e) (e) 

Figure 6. Resonance curves of Geometry 3 without companion mode: (a) qr= 0.016 N; (b) qr= 0.032 N; 

(c) qr= 0.064 N; (d) qr= 0.128 N; (e) qr= 0.192 N; (f) qr= 0.256 N. 
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Finally, Figure 6 depicts the resonance curve of Geometry 3 for increasing values of lateral load amplitude. 

As can be observed, the geometry relations play and important role in the nonlinear response because in this case, 

for qr = 0.016 N, qr = 0.032 N and qr = 0.064 N the shell displays linear behavior with small amplitude oscillations. 

For qr = 0.007 N the shell starts to display softening behavior and for qr = 0.192 N and qr = 0.256 N the softening 

behavior is more evident, but the amplitudes of vibrations are smaller if compared with amplitudes of previous 

geometry cases.  

There is a strong influence of geometry relations on the nonlinear vibrations of clamped-free cylindrical 

shells because, depending on the rations the shell will display complex nonlinear oscillations with both small and 

large amplitude vibrations as well as hardening nonlinear paths with large amplitude vibrations. 

4  Concluding Remarks. 

In this work the free and forced nonlinear vibrations of clamped-free elastic cylindrical shells subjected to 

lateral harmonic load are studied. To model the shell, the Koiter-Sanders nonlinear theory is applied to obtain the 

strain energy and the field displacements were described by double trigonometric series in both longitudinal and 

circumferential directions where natural boundary conditions are satisfied.  

Three shell geometries (Geometry 1: L/R=2.0 and R/h=944), (Geometry 2: L/R=3.0 and R/h=800), (Geometry 

1: L/R=1.0 and R/h=200) were selected to study the influence of geometry ratios on the nonlinear dynamic 

response, for this, thirteen field displacements were selected, and a convergence study was developed to find the 

field displacement that generate softening behavior in the frequency-amplitude relations. A series with 18 dof was 

selected and the resonance curves for increasing values of lateral load were obtained.  

The influence of geometry relations became evident because, depending on its geometry the shell will display 

linear or softening behavior with small or large amplitude oscillations. For Geometry 1, the shell displays softening 

behavior and a window with the coexistence of chaotic and periodic oscillations as well as a hardening path with 

large amplitude vibrations. For Geometry 2, the shell displays softening behavior with a hardening path with large 

amplitude oscillations but no chaotic motions and for Geometry 3, the shell depicts only softening behavior. These 

resonance curves show the strong influence of geometry ratios on the nonlinear dynamic response of the clamped-

free cylindrical shells. 
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