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Abstract. Hyperelastic membranes are found in many engineering fields. A key step in their mathematical 

modelling is the choice of an appropriate constitutive law and, subsequently, the determination of the associated 

material parameters, usually obtained from experimental results, with the occurrence of multiple sets of optimal 

material parameters for the same data sets, depending on the fitting process. The influence of the constitutive law 

of a hyperelastic material on its nonlinear behavior is well known and both static and dynamic responses can vary 

greatly, depending on the parameter values. Thus, the application of the uncertainty propagation analysis, capturing 

the expected outcome in a probabilistic sense, constitutes an interesting tool in the analysis of hyperelastic 

structures, particularly in the dynamic case. Here it is applied to the analysis of a pressure-loaded spherical 

hyperelastic membrane with constitutive uncertainty. Different hyperelastic constitutive models are addressed, 

comparing the static and dynamic nonlinear response under parametric uncertainty. Finally, the global stability is 

developed by expanding a previous concept of (Q, Λ)-attractors to the dual space where basins are defined. 

Specifically, the inclusion of parametric uncertainty is responsible for the diffusion of attractors and basins 

boundaries, drastically changing the phase-space topology. A novel methodology of phase-space discretization is 

also considered to represent the phase-space topology under uncertainty. A global dynamical analysis framework 

in the context of parametric uncertainty is yet to be addressed, specifically for hyperelastic constitutive models, 

constituting the novelty of the present work. 
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1  Introduction 

The applicability of spherical membranes is vast, being found in many engineering fields, such as spatial 

structures, containers, and deployable structures, see Jenkins [1]. Furthermore, they can undergo large 

displacements in the operational stage, requiring nonlinear mechanics to be modelled for the correct representation 

of the physical system. 

However, there are many possible material models to represent hyperelastic materials. Depending on this 

choice, the nonlinear effects can be drastically different, see Silva et al. [2]. For the case of spherical membranes, 

specifically, there can be one or two potential wells, with unbounded solutions for the first case. Furthermore, 

complicate nonlinear behavior is observed for the dynamically excited membrane. Even if a material model is 

defined, usually it depends on various parameters, which are difficult to define experimentally, as demonstrated 

by Ogden et al. [3]. 

This parametric uncertainty has been explored in recent years, under the alias of stochastic hyperelastic 

constitutive laws. Staber and Guilleminot derived models for general incompressible hyperelastic materials [4] 
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and for compressible Odgen type materials [5]. They pointed essential conditions that the energy function must 

satisfy for the response to be meaningful, namely, that they are polyconvex and coherent at small strains. Later, 

those concepts where reformulated by Mihai and coworkers [6–8] as material objectivity, material isotropy, Baker-

Ericksen inequalities, and, for the stochastic case, finite mean and variance of the random shear modulus. Such 

conditions implies that the Odgen material parameters that composes the shear modulus must all be finite and 

positive, and if uncertainty is assumed, the distribution is of gamma type according to the maximum entropy 

principle. However, the influence of such uncertainties in the nonlinear dynamics is still being explored, with 

limited progress regarding global dynamics. 

This work concentrates in the analysis of hyperelastic spherical membrane with Odgen type material. The 

model will be taken from a previous work [2], namely an Odgen model with 3 terms, and parametric uncertainty 

with gamma distribution is assumed. The global dynamics of this system is explored, demonstrating the effect of 

uncertainty over both the attractors’ distributions and basins of attraction. The transfer operator framework is 

adapted from Dellnitz et al. [9], substituting the Monte Carlo by a stochastic collocation via Laguerre-chaos, see 

Xiu and Karniadakis [10], thus diminishing the computational cost of the analysis. 

2  Hyperelastic membrane formulation 

The physical problem consists of a closed, homogeneous, isotropic and hyperelastic spherical membrane of 

initial radius a, thickness h and density γ. It is assumed that 1h a , therefore the theory of thin-walled 

membranes under finite deformations can be considered. The formulation for axisymmetric motions was 

previously developed by Silva et al. [2], assuming materials of neo-Hookean and Odgen type. Adopting the stretch 

ratio x A a= , where A is the deformed radius, the full nondimensional equation of movement for the general 

Odgen material is  
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where N is the number of terms, μi and αi are the material constants, f(x) is the damping function. A static 

component takes part in the equation, xs, resulted from the static preload Qs. A harmonic perturbation of the static 

equilibrium is defined, with amplitude ratio β and frequency Ω. The nondimensional time variable is 
2 1/2

1(2 )t a  = , and x d x d= . Finally, the damping function is defined as [2] 
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where ζ and ξ are the linear and cubic nondimensional damping coefficients. 

The static variables must be calculated before eq. (1) takes place. Specifically, the static displacement is 

obtained from eq. (1) by setting the time dependent variables to zero, resulting in 
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The lowest natural frequency can also be obtained from eq. (1). By linearizing it around the static equilibrium 

and setting to zero the damping function, we obtain 
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and, by inspection, the nondimensional natural frequency is 
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coinciding with the development of Gonçalves [11]. 

The analysis follows from a static position, obtained from eq. (3) given a preload Qs. The natural frequency 

is then calculated by eq. (5), and thus the damping force is defined, eq. (2). The equation of movement can them 
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be applied, eq. (1), describing the nonlinear breathing motions of the hyperelastic membrane. 

One of the material parameters is adopted as uncertain. However, important aspects must be considered so 

that eq. (1) can adequately represent the physical problem. The developments of Staber and Guilleminot [4] 

identified that the parameters μi must have a gamma distribution if uncertainty is assumed. Therefore, uncertainty 

in μi will be represented as an additive component,  , with distribution 

 ( )
( )

; , 0 , 1
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e
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with mean 1 = +  and variance 
2 1 = + , see Xiu and Karniadakis [10].  

3  Global dynamics under parametric uncertainty 

The effect of parametric uncertainty can be observed over the attractors’ densities of eq. (1). Dellnitz et al. 

[9] developed the (Q, Λ)-Attractor concept to account for parametric uncertainty. This is achieved through global 

dynamic analysis, expanding the original Ulam method. Given the flow map ( ),x   generated by the dynamical 

system with uncertainty parameter λ, and a cellular subdivision  1, , nb b  of the phase-space, each entry of the 

transfer matrix is computed by Dellnitz et al. [9] as 
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where m(α) is the measure of α. Therefore, a Monte Carlo approach is conducted, sampling nb points in each cell 

bi with nλ parameter values randomly selected of the probability distribution of λ. Each pij entry is them the mean 

flux over the probability space spanned by the uncertainty. This same approach can be extended for stochastic 

dynamic systems by identifying the sample-path probability space, as previously done by Benedetti and Gonçalves 

[12]. 

The Monte Carlo approach is, nevertheless, computationally expensive. To alleviate this, we recede to the 

continuous definition of the transfer matrix, i. e., the Perron-Frobenius operator and the Foias operator, see Lasota 

and Mackey [13]. It is defined as 

 ( ) ( ) id , ,t B t
B
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and its discretization due to the cellular subdivision of the phase-space is 
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As we can check in eq. (9), the Monte Carlo approach of eq. (7) approximates the integrals over the phase-

space and probability space. Here, we conducted a stochastic collocation approach, substituting the integral over 

the probability space by a weighted sum. Specifically for gamma distributions, the Laguerre-Chaos polynomials 

are employed. For more details regarding the stochastic collocation procedure, we refer to Xiu and Karniadakis 

[10]. 

4  Results 

For this analysis we considered a parameter set from Odgen et al. [3], which were also analyzed by Silva et 

al. [2], namely the OSS2 model with N = 3. They are resumed in Table 1. The damping, static preload and dynamic 

amplitude and frequency are also from [2]. They are resumed in Table 2. Finally, the parametric uncertainty case 

aborded in this work is defined by adding a gamma variable λ to the first shear parameter, μ1. 
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Table 1. Material parameters of model OSS2 

I αi μi 

1 1.6918 4.4184 

2 5.4929 0.013381 

3 1.6919 0.47456 

The global dynamic analysis was conducted over the phase-space window [ 0.9;9] [ 12;12]−  − . The cellular 

partition was constructed incrementally, from 32 divisions per dimension up to 256 division per dimension, 

flagging the basin boundaries and attractors’ densities. Also, the number of initial conditions in each cell is a 

function of the cell size, starting at 144 points and ending at 36 points. For the uncertainty parameter, we adopted 

five points in the probability space to compound the stochastic collocation, so that each point was integrated five 

times, with 5 different parameter values, for 1-period of excitation. Finally, the classical fourth order Runge-Kutta 

was adopted, with time step 2 2000  =  . 

Table 2 Static preload, damping and forcing terms 

parameters value 

xs 1.030073206696912 

Qs 0.15 

ζ 0.01 

ξ 0.01 

β 0.8 

Ω 2.1514 

  
(a) (b) 

  
(c) (d) 

Figure 1. Global dynamics of the deterministic case: (a) attractors’ densities, (b) phase-space final subdivision, 

(c) nonresonant basin of attraction, (d) resonant basin of attraction 
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The first analysis consists of deterministic results. The densities are presented in Fig. 1a, where two attractors 

are clearly depicted, one of small amplitude (nonresonant) and other with large amplitude (resonant). The resonant 

attractor shows a higher density, which indicates that it has the larger basin of attraction. This is confirmed by 

inspection of the basin of attractions, presented in Figs. 1c, d. In the basins, the attractors are depicted as red 

markings, since Dirac delta distributions are expected in the deterministic case. The final phase-space subdivision 

is depicted in Fig. 1b, showing the capability of the methodology to locally refine the basins boundaries and 

attractors’ densities. The subdivision procedure was expanded upon the global dynamics’ algorithms used in 

GAIO, by Dellnitz and coworkers [14]. 

 

Figure 2. Lagrangian descriptor gradient 

Figure 2 contains the gradient of the lagrangian descriptor (LD). This is an additional result, calculated 

following Beneitez et al. [15], which marks the basins boundaries. As expected, the phase-space is more refined 

where the LC gradient has high values. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Global dynamics of parametric uncertainty case with α = - 0.9999: (a) attractors’ densities, (b) phase-

space final subdivision, (c) nonresonant basin of attraction, (d) resonant basin of attraction 
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The next result is the first with parametric uncertainty, with α = - 0.9999, Fig. 3. The uncertainty effect is 

more present in the attractors’ densities, Fig. 3a, specifically in the resonant attractor, spreading it over the phase-

space. This is more noticeable also in the phase-space subdivision, Fig. 3b, where this attractor is more refined. 

The basins of attraction display almost no difference with respect to the deterministic case, Fig. 3c, d. It is 

surprising that such a small random perturbation could change one density to this degree, but its basin remains 

still. 

Lastly, the second parametric uncertainty case with α = - 0.99 is presented in Fig. 4. The resonant attractor is 

heavily affected by the uncertainty, spreading over a large area of the phase-space, Fig. 4a. This is more detailed 

in the phase-space subdivision, Fig. 4b, where the resonant attractor region is increasingly refined. The basins of 

attraction, Figs. 4c, d, are surprisingly insensitive to this uncertainty level, with boundaries remained localized in 

the phase-space. However, the overlapping attractor of the resonant case reveals that its density is close to the 

boundary, Fig. 4d, meaning that any perturbation could drastically change the global dynamics. This is confirmed 

when we tried to verify the case for α > - 0.99, where the resonant attractor is destroyed. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Global dynamics of parametric uncertainty case with α = - 0.99: (a) attractors’ densities, (b) phase-

space final subdivision, (c) nonresonant basin of attraction, (d) resonant basin of attraction 

5  Conclusions 

The effects of parametric uncertainty on the global dynamics of a hyperelastic spherical membrane was 

addressed. An Odgen material type with three terms was considered with uncertainty in the first component of the 

shear modulus. The computational cost of the analysis was alleviated by considering stochastic collocation to 

obtain the mean transfer matrix and, consequently, the mean results. The mean results demonstrate the sensitivity 

of the model in the parameter values, where the resonant response was destroyed in the mean sense for just a small 

parametric perturbation. Other parametric uncertainty cases and their effects over nonlinear and global dynamics 

will be investigated in a future research. 
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