
Structural Optimization of trusses considering different buckling models

Marcela A. Juliani1, Wellison J. S. Gomes1

1Center for Optimization and Reliability in Engineering (CORE), Department of Civil Engineering, Federal Uni-
versity of Santa Catarina
João Pio Duarte da Silva S., 88040-900, Santa Catarina, Brazil
marcelajulianii@gmail.com, wellison.gomes@ufsc.br

Abstract. Constraints related to buckling usually have a significant impact in the structural optimization of trusses,
and may be evaluated by employing different models. In this paper, an approach that considers a single global sta-
bility constraint, related to the so-called inelastic critical load, is presented and compared with other approaches
widely used in the literature. In this approach, each element of the truss is discretized into several frame elements.
After applying geometrical initial imperfections in the structure, inelastic buckling can be taken into account im-
plicitly via second-order inelastic analyses. The optimal structures obtained by employing inelastic critical loads
for the entire structure, as well as those obtained by considering, for each one of the truss elements, Euler buckling
loads or the inelastic buckling loads given in the AISC code, are compared. The optimization problems addressed
herein may demand high computational efforts, especially for the inelastic analyses, thus a previously proposed
optimization framework based on surrogate models is employed. As a result, higher objective function values
occur when the model from the AISC code is used. Furthermore, the inelastic model can lead to structures with
large displacements, so the displacements must be limited to result in more realistic designs.
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1 Introduction

Truss structures are widely employed in civil construction, such as in bridges, roofs and transmission towers.
Thus, several authors have been researching the field of truss optimization, in order to find safe structures with
the lowest cost. In this type of problem, one of the most used constraints is the one related to the buckling of the
bars. According to Yoo and Lee [1], this phenomenon corresponds to the lateral deflection of structural elements,
usually straight and slender, in relation to their initial longitudinal positions, due to compression. In general,
buckling occurs abruptly and can lead to partial or total failure of the structure.

Lateral buckling of bars can be evaluated by different models. Most of the time, this phenomenon is taken
into account by confronting the stress in each structural element, obtained through first-order elastic analysis,
with a critical buckling stress, which depends on the material and geometric properties of the analyzed element.
Many authors who adopt this approach use Euler’s formulation to determine the referred allowable stress, which
considers that the material has linear-elastic behavior, representing the so-called elastic buckling [2, 3]. On the
other hand, there are also empirical expressions that seek to consider the response that the material may present
beyond the limits of the idealized linear-elastic regime, such as the formulations provided by the AISC-360 [4]
code, representing the so-called inelastic buckling [5, 6].

Although the scenarios presented above are the most used in the literature, due to their simplicity and low
computational cost, other models can lead to a better representation of the structural behavior. Modeling the
buckling of each element individually, can result in a limited analysis for optimization problems of large structures,
since it does not take into account the behavior of the structure as a whole. In this sense, some researchers consider
the buckling through a single global stability constraint for the entire structure, represented by a critical load. In
this approach, each truss element is discretized into several frame elements, in some cases with moment releases
at hinged connections. From this model, the elastic critical load can be determined through an eigenvalue analysis,
as in Torii et al. [7] and Mitjana et al. [8], or also through second-order elastic analyses with geometrical initial
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imperfections in the structure, as in Madah and Amir [9] and Varma et al. [10].
As shown, there are several studies on optimization that use different models to represent buckling. However,

the differences in the optimal configurations obtained by these models are hardly discussed. Furthermore, despite
the advances in the representation of the structural behavior, there is a lack of optimization studies that consider
the effect of the inelastic behavior of the material in the critical load. In this context, this paper presents an analysis
of the optimal configuration of trusses, considering three distinct constraint scenarios: scenario 1 considers elastic
buckling constraint, characterized by the application of Euler’s critical stress; scenario 2 uses the formulation given
in the AISC-360 [4] code to determine the critical stress; and scenario 3 considers inelastic buckling constraint,
represented by a single stability criterion. This study is an extension of a previously published paper [11], so herein
a new scenario and a larger structure are evaluated, and an optimization method based on metamodels is used to
deal with the high computational effort demanded in the solutions of the problems.

The remainder of this paper is organized as follows: section 2 presents the methodology applied in this
research, such as the formulation of the buckling models, as well as the optimization method; section 3 presents
the application of the proposed approach to two numerical examples; conclusions and discussions about the results
obtained in this paper are presented in section 4.

2 Optimization and buckling models

The optimization problem addressed herein consists of finding the values of the design variables x that mini-
mize the objective function f(x), subject to inequality constraints gi(x) ≤ 0 and to lower and upper bounds of each
variable xj , with i = 1, ..., n and j = 1, ...,m, where n and m are the numbers of constraints and design variables,
respectively. In this section, the three constraint scenarios evaluated are presented, as well as a brief description of
the optimization method. All codes are developed in MATLAB [12] and the software MASTAN2 [13] is used for
structural analysis.

2.1 Euler’s critical stress: scenario 1

In this scenario, a first-order elastic analysis of the truss is performed, and then for each one of the nbar
bars, the following checks are made: if the i-th structural element is under compression, the absolute value of its
stress |σi(x)| must not exceed the lowest stress between the yield stress σyi and the Euler buckling stress σei(x);
if the i-th structural element is under tension, its stress σi(x) must not exceed σyi . Equation (1) summarize this
procedure, where E is the modulus of elasticity of the material, I and A are, respectively, the moment of inertia
and the cross-sectional area of the structural element and Le is the buckling length, taken equal to the length of the
bar in the case of trusses.

gi(x) =
(i=1,...,nbar)


σi(x)
σyi

− 1 ≤ 0, if σi(x) > 0;

|σi(x)|
min(σyi , σei(x))

− 1 ≤ 0, if σi(x) < 0, with σei(x) =
π2EiIi
AiL2

ei

.

(1)

2.2 Allowable stress according to AISC: scenario 2

According to AISC-360 [4], there are two equations that govern the strength of bars under compression,
which are based on the limit state of flexural buckling [14]: the first represents elastic buckling, which consists
of a portion of the Euler critical stress; the second is an empirical relationship for the inelastic range of buckling.
Both equations include the effects of residual stresses and initial out-of-straightness. Thus, the critical stress for
compressed bars is given by eq. (2), where r is the radius of gyration. Similar to scenario 1, the stress in the
elements under tension is limited to σy and the stress in the elements under compression cannot exceed σcr.

(a) If
Le

r
> 4.71

√
E

σy
→ Elastic buckling: (b) If

Le

r
≤ 4.71

√
E

σy
→ Inelastic buckling:

σcr = 0.877σe σcr =
(
0.658

σy
σe

)
σy

(2)
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2.3 Inelastic critical load: scenario 3

In this scenario, a single constraint is considered, given by

g(x) =
P

Pcr(x)
− 1 ≤ 0, (3)

where P is the applied load and Pcr(x) is the critical load, which is the maximum load value that the structure can
handle before reaching failure. In order to incorporate the possibility of buckling and yielding in the computation of
the critical load, it is necessary to impose initial imperfections to each bar of the structure and to perform inelastic
and geometrically nonlinear structural analyses. To do so, in this paper the initial imperfections are based on some
of the first buckling modes of the structure and the materials are assumed to have elastic-plastic characteristics,
according to the formulations of McGuire et al. [13].

Therefore, in this scenario, the following procedure is carried out: first, an eigenvalue analysis of the structure
is performed; then, for each buckling mode considered, the critical load is calculated by second-order inelastic
analysis, taking into account a perturbation in the nodal coordinates of the structure according to c = c0 + αu,
where the vectors c0 and c are the nodal coordinates before and after the perturbation, respectively, u is the vector
of nodal displacements, according the buckling mode considered in the eigenvalue analysis, and α is a reduction
factor; finally, eq. (3) is checked for each one of the critical loads evaluated. In structural analysis, truss bars
are modeled using several frame elements with moment releases at hinged connections. So, elements that are
connected to hinges are modeled as fixed-hinge frame element while others are modeled as fixed-fixed elements.

The pinned end column shown in Fig. 1(a), previously studied by McGuire et al. [13], is analyzed herein to
define the value of α and to validate the three buckling models. The parameters of the column are: A = 9.13 in2

(58.9031 cm2), I = 37.1 in4 (1544.2186 cm4), plastic section modulus Z = 14.1 in3 (231.0576 cm3), L = 120 in
(304.8 cm), E = 29000 ksi (200 GPa) and σy = 50 ksi (345 MPa).

First, to define the reduction factor, the critical loads are obtained for increasing values of α and compared
with the theoretical load provided by McGuire et al. [13], as shown in Fig. 1(b). It is observed that, although all
curves converge to the theoretical load, the displacements obtained are different from each other. Varma et al.
[10] notes that with the increase in the magnitude of the imperfection, the load-displacement curve for elastic
analysis shifts away from the ideal situation (sudden large displacement), which is also observed herein for inelastic
analysis. However, when no imperfection is applied (α = 0) the model cannot capture the buckling configuration,
resulting in null lateral displacements. Thus, α = 0.10% is adopted in this paper, since it is able to identify the
instability without major influence on the structural displacements.

To verify the three scenarios, the resistance curves of the column are obtained for several values of slenderness
ratio. Figure 1(c) shows the curves, which are very similar to those provided by McGuire et al. [13]. Note that the
biggest differences between the models occur for slenderness ratio between 25 and 125. For slenderness smaller
than 25, the resistance is basically given by the yield stress, and for slenderness greater than 125, the buckling is
characterized as elastic. Furthermore, the behavior of scenario 3 is similar to that of scenario 2, with the biggest
difference between them being 15%. Scenario 1 provides resistances up to 33% and 52% greater than scenario 3
and 2, respectively.
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Figure 1. Pinned end column problem
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2.4 Optimization framework

Surrogate model is a mathematical model constructed based on a limited data set from a computational or
physical experiment. Thus, it is possible to use the surrogate model in order to predict the results assumed by the
experiment, without performing it [15]. In the context of optimization, surrogate models can be used to replace
objective and/or constraint functions, when these functions demand high computational efforts to be evaluated.

The optimization framework used herein is similar to the one presented in Juliani and Gomes [16], which
uses the Kriging metamodel and performs three search strategies to improve the accuracy of the surrogate model
and to look for the optimum during the optimization process: local search, global search and refinement. The main
modification performed herein is that only the constraints are replaced by the metamodel, since these are the func-
tions that may demand high computational effort in the evaluated scenarios, especially for the inelastic analysis.
Furthermore, the refinement step adopted corresponds to the solution of the surrogate optimization problem via a
gradient-based method. The optimum found in this step is inserted into the data set to improve Kriging accuracy.

This method showed promise for several examples, with different types of structures, design variables, ob-
jective functions and constraints, keeping the accuracy of the solution and reducing the number of constraints
evaluations and computational time.

3 Numerical examples

This section presents two numerical examples. The first, a pinned end column, is an introductory example, to
visualize the behavior of the different scenarios. The second corresponds to a model based on a British bridge. In
both examples, each scenario is run 10 times, considering different initial points for the optimization framework,
related to different seeds of the pseudo-random number generator. The best result obtained is taken as the final
result of the optimization process. In the structural analysis of scenario 3, the maximum applied load ratio is 1.1
and 110 load increments are used. Furthermore, the first three modes of buckling are considered as imperfection.

3.1 Pinned end column

The column studied here is the one presented in section 2.3. The objective function corresponds to the cross-
sectional area, which is adopted as tubular. The design variables are the mean diameter d and the thickness t of the
cross section. The lower and upper bounds are 2 in (5.08 cm) ≤ d ≤ 10 in (25.4 cm) and 0.2 in (0.508 cm) ≤ t ≤
0.6 in (1.524 cm), and P = 100 kips (444.8 kN).

Table 1 shows the optimization results, where FE refers to the number of constraint evaluations. The slender-
ness ratio of scenarios 1 to 3 are, respectively, 85, 73 and 78, which correspond to the region where the buckling
models are distinct from each other in Fig 1(c). In this situation, eq. (2) indicates that the optimum of its scenario is
in the inelastic region. As expected, it is observed that the optimal structure for the Euler constraint is the cheapest,
and that the based in the AISC-360 [4] code is the most expensive. Also, the optimal designs with higher values
satisfy the constraint scenarios that presented optimal designs with lower values, whereas the opposite is not valid.
Figure 2 shows the surface of the constraints along the search space. It can be observed that scenario 3 presents
some discontinuities, related to the load increments of the structural analysis. The more increments, the less dis-
continuities appear on the surface; however, the computational effort also increases. This fact can be a challenge,
making it difficult to solve optimization problems involving many design variables and large structures. This may
also impair the accuracy of the metamodels.

Table 1. Optimization results: Pinned end column

d (cm) t (cm) A (cm2) max(g) Mean Std. FE Time (min)

Scenario 1: Euler 10.1546 0.5080 16.2061 -2×10−6 16.3445 0.4369 39 0.98
Scenario 2: AISC 11.8767 0.5080 18.9543 -2×10−6 18.9745 0.0430 39 0.77
Scenario 3: Inelastic 10.9932 0.5080 17.5443 0 17.7072 0.3366 57 1.60

3.2 A model of Forth bridge

Previously analyzed by Kaveh and Khayatazad [5], this problem is based on a British bridge, as shown in
Fig. 3. In the present paper, the bars are categorized into 3 groups and the structure is symmetrical in relation to
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(a) Scenario 1: Euler (b) Scenario 2: AISC (c) Scenario 3: Inelastic

Figure 2. Constraint scenarios for different buckling models: Pinned end column

the middle vertical plane. The search space for the cross section areas are 25 cm2 ≤ A ≤ 100 cm2 and the vertical
position of nodes 2 to 11 can vary ±1.4 m. The objective function corresponds to the mass of the structure and
the self-weight is considered in the load. The material has E = 210 GPa, σy = 250 MPa and specific weight of 7.8
ton/m3. The relationship I = 0.4872A2.1858 and Z = 0.6277A1.5931 is used, based on the hollow circular sections
available in AISC [17].
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Figure 3. Forth bridge problem

The optimization results, presented in Table 2, show that the inelastic scenario led to the lightest structure,
while the scenario based in the code resulted in the heavier structure. It can be seen in the load-displacement curve
of Fig. 4 that scenario 3 presented vertical displacement in mid span approximately 100 times greater than the
other scenarios, making this result inconsistent with a viable structural design. It is noteworthy that the optimal
designs for the first two scenarios, when applied in the inelastic model, do not lead to large displacements. The
plastification of bars allows a better redistribution of efforts, so that when this phenomenon occurs and does not
lead to the collapse of the structure as a whole, the structural model is able to support more load. In the optimal
structure of scenario 3, several bars reached the yield stress without an instability that could lead to the collapse
of the structure; however, this plastification led to large displacements. Among the optimal responses obtained in
the runs of scenario 3, the one with the smallest displacement can be presented as a more realistic solution. This
configuration has 1763.2920 kg and displacement of -3.47 cm in the mid span. The configurations and the normal
stresses of these solutions are illustrated in Fig. 5. All solutions resulted in a shape similar to the original bridge,
except for the inelastic result with large displacement. In addition, the optimal structure of scenario 2 meets the
constraints of all scenarios; however, the other structures only meet the constraints of their own scenarios.

4 Conclusions

This paper presented a comparison between three distinct buckling constraints scenarios: scenario 1 consid-
ers elastic buckling; scenario 2 uses the formulation given in the AISC-360 [4]; and scenario 3 considers inelastic
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Table 2. Optimization results: Forth bridge

Design Scenario 1:
Euler

Scenario 2:
AISC

Scenario 3:
Inelastic

Design Scenario 1:
Euler

Scenario 2:
AISC

Scenario 3:
Inelastic

y2,y18 (m) 0.6337 1.0831 -1.0765 A1 (cm2) 25.0000 25.0000 25.0000
y3,y19 (m) 0.5422 1.0586 1.4000 A2 (cm2) 33.3942 33.8713 25.0000
y4,y16 (m) 0.2235 0.4569 -1.4000 A3 (cm2) 32.3990 32.4175 27.7639
y5,y17 (m) 1.4000 1.4000 0.4400 Mass (kg) 1740.5315 1825.4670 1478.4984
y6,y14 (m) -1.4000 -1.4000 -1.4000 max(g) -0.0008 -0.0012 -0.0001
y7,y15 (m) 0.2185 -0.0443 0.1061 Mean 1838.3535 1902.8457 1756.6890
y8,y12 (m) -1.4000 -1.4000 -1.4000 Std. 57.2237 85.6005 108.6218
y9,y13 (m) -0.3881 -0.6104 -0.0894 FE 750 757 754
y10 (m) -1.4000 -1.4000 0.8329 Time (min) 19.18 20.66 77.86
y11 (m) -0.5650 -0.8543 -0.4094
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Figure 4. Load-displacement curve: Forth bridge
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Figure 5. Optimal configurations and normal stress distribution: Forth bridge
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buckling. It was observed that the scenario based in the code presents a resistance curve, for a single column,
similar to that of the inelastic scenario. However, it is noteworthy that the inelastic model takes into account the
global behavior of the structure. Thus, if a structure with more elements is analyzed, the scenarios can lead to
quite different results. Two optimization problems were evaluated. In both examples, the optimal configuration of
scenario 2 provided higher values of objective function and also met the constraints of the other scenarios. Further-
more, it was found that the inelastic buckling model can result in a lighter structure, but with large displacements.
This can occur due to the plastification of the bars without the occurrence of a generalized instability. Thus, the
importance of considering maximum allowable displacements when using inelastic models is highlighted.
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