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Abstract. Structural analysis of slender structures, goes through the study of the static, dynamic and instability. 

This requires the evaluation of natural frequencies and buckling loads. The Rayleigh method was an analytical 

formulation used to access these data. To verify the accuracy of the formulation we applied the analytical method 

to a cantilever metallic hollow tower, used as a small wind turbine tower, to estimate the first eigenfrequency and 

the buckling load, assuming different shape functions, the results are carefully compared with the results obtained 

by a finite-element model using the SAP2000 software. The frequency values are also compared with vibrations 

measurements in the real structure. Results showed that Rayleigh quotient are reliable to evaluate the frequency, 

with the first frequency in good concordance with FEM simulations and experimental results. Nevertheless, the 

analytical prediction of buckling loads shows some incongruent results with differences in the range of (3-50)% 

and highlights the importance of select the appropriate model to represent the structure. 
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1  Introduction 

Tapered hollow metallic towers are slender structures usually used as support for wind turbines and 

telecommunication equipment because of their aesthetic and low need of implantation area compared with other 

solutions, such as lattice guyed towers. The tower should support the dead loads of equipment and additional loads 

caused by wind, as slender structures vibration and buckling loads (axially and lateral) are significant and can be 

the main cause of instability. Evaluation of these parameters is essential in the initial phase of the design process, 

and it is carried out through analytical models. The pre-design geometry is then evaluated in a finite element model 

(FEM), which consists of a simplification of the structure, but it must adequately represent the real system.  

Previous studies for tapered towers buckling usually consider an I-beam section or a solid section [1]–[7], 

however, the thin hollow tower behavior is quite different essentially when analyzing the buckling load. Several 

studies proposed numerical formulations for frequency estimation [8]–[12]. Some simplified models for frequency 

estimation are more accurate than others, the Rayleigh’s method and SDOF reduction method [8] proved to be 

reliable formulations. The Rayleigh method is quite important here since it allows the easy evaluation of both the 

frequency and critical load, and the results depend entirely on the shape function that is assumed to approximate 

the exact mode shape.  

The main objective of this study is to evaluate the accuracy of the analytical models on the prediction of 

vibration frequencies and buckling loads when applied to structures with variable inertia. The analytical models 

applied to a small wind tower were compared with FEM models, which comprise models using beam and shell 

elements. The simplified FEM model consists of beam elements, to evaluate the uncertainty of model parameters 

or inaccuracies in modeling, the frequencies results were confronted with experimental results of in-situ vibration 
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test, using Operational Modal Analysis (OMA). 

2  Analytical formulation 

The classical Rayleigh’s Method is based on the principle of conservation of energy, basically a single degree 

of freedom system, is used to describe a continuous system, describing their properties as a function of generalized 

coordinates [13], [14]. 

Considering a cantilever beam with a distributed mass with the displacement of the tower in simple harmonic 

motion, given by: 

𝑦(𝑧, 𝑡) =   𝑧0 ∙ sin 𝜔𝑛𝑡 ∙ 𝜓(𝑧) (1) 

Where 𝑧0 is the amplitude of the generalized coordinate system z(t), 𝜓(𝑧) is the assumed shape function and 

𝜔𝑛 is the natural frequency to be determined. 

The maximum potential energy (U) of the system over a vibration cycle is equal to the strain energy 

associated with the maximum displacement 𝑦0(𝑧) 

𝑈 =  ∫
𝐸𝐼(𝑧)𝑦′′(𝑧)2

2
𝑑𝑧

𝐿

0

= ∫
𝑧0

2𝐸𝐼(𝑧)[𝜓′′(𝑧)]2

2
𝑑𝑧

𝐿

0

 (2) 

Where, E is the elasticity modulus, I(z) is the second moment of inertia variation over the length L, and 𝑦′′(𝑧) 

denotes the second derivative of the displacement y(z). The maximum kinetic energy of the nonuniformly 

distributed mass 𝑚(𝑧) is:  

𝐶 =  ∫
𝑚(𝑧)𝑦′(𝑧)2

2
𝑑𝑧

𝐿

0

=  ∫
𝑧0

2𝜔𝑛
2𝑚(𝑧)[𝜓(𝑧)]2

2
𝑑𝑧

𝐿

0

 (3) 

Equation the maximum potential energy to the maximum kinetic energy, the squared frequency is found to 

be: 

𝜔𝑛
2 =

 ∫ 𝐸𝐼(𝑧)[𝜓′′(𝑧)]2𝑑𝑧
𝐿

0

∫ 𝑚(𝑧)[𝜓(𝑧)]2𝑑𝑧
𝐿

0

 (4) 

when the structure has a tip mass 𝑀𝑡   on the top the formula become: 

𝜔𝑛
2 =

 ∫ 𝐸𝐼(𝑧)[𝜓′′(𝑧)]2𝑑𝑧
𝐿

0

∫ 𝑚(𝑧)[𝜓(𝑧)]2𝑑𝑧 + 𝑀𝑡
𝐿

0

 (5) 

For the axial buckling problem, a similar analogy can be used but now the work done by the force P applied 

to the system is stored as stretching strain energy, as the system allow a bending deformation 𝜓(𝑧), the change in 

the potential energy is: 

∆𝑈 =  ∫
𝐸𝐼(𝑧)[𝜓′′(𝑧)]2

2
𝑑𝑧

𝐿

0

−  ∫
𝑃[𝜓′(𝑧)]2

2
𝑑𝑧

𝐿

0

 (6) 

The critical load is found when ∆𝑈 = 0 

𝑃 =  
 ∫ 𝐸𝐼(𝑧)[𝜓′′(𝑧)]2𝑑𝑧

𝐿

0

∫ [𝜓′(𝑧)]2𝑑𝑧
𝐿

0

 (7) 

Timoshenko [15] used another formulation for the strain energy and the critical load is calculated by: 

𝑃′ =  
 ∫ [𝜓′(𝑧)]2𝑑𝑧

𝐿

0

∫
[𝛿−𝜓(𝑧)]2

𝐸𝐼(𝑧)
𝑑𝑧

𝐿

0

 (8) 
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Where 𝛿  is the deflection on the free end of the tower, this formula is known as the Timoshenko quotient 

more accurate since depends only on the approximation of the deflected shape, which is easier to obtain than the 

𝜓′′(𝑧) according to Lang [16]. 

In the scope of the lateral instability, the buckling load can be calculated by a direct method according to 

Barros [17] 

𝑃𝐿 =  
 𝐸𝜓(𝐿)

∫
𝜓(𝑧)𝑧

𝐼(𝑧)
𝑑𝑧

𝐿

0

 (9) 

3  Tower and investigation description 

3.1 Description of the tower 

A steel tower presented in Fig. 1 with height (L) of 17.8 m is located at School of Technology and 

Management of the Polytechnic Institute of Bragança (Portugal), consists of a steel S275 structure with a 

hexdecagonal section with a diameter db = 0.5890 m at the base and dt =  0.1954 m at the top and constant wall 

thickness 𝑒 = 4 mm.   

 

Figure 1 - Small wind turbine tower, Bragança - Portugal 

The tower is fixed to the gravity-based foundation by 16 anchor bolts connected to a flange at the base, the 

flange has an external diameter of 0.7960 m and thickness of 20 mm, the main properties are shown in Tab 1. 

Table 1 - Tower properties 

Density (𝝆) 7850.000 [kg/m³] 

Young's modulus 210.000 [GPa] 

Poisson's ratio 0.300 -- 

Yield strength 275.000 [MPa] 

L 17.800 [m] 

𝒅𝒕 0.195 [m] 

𝒅𝒃 0.589 [m] 

𝒆 0.004 [m] 

𝑨𝒃 
𝜋

4
(𝑑𝑏

2 − (𝑑𝑏 − 2𝑒)2) [m2] 

𝑰𝒃 
𝜋

64
(𝑑𝑏

4 − (𝑑𝑏 − 2𝑒)4) [m4] 
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𝑰𝒕 
𝜋

64
(𝑑𝑡

4 − (𝑑𝑡 − 2𝑒)4) [m4] 

𝜼 1 − (
𝐼𝑡

𝐼𝑏
)

1 3⁄

   

𝒎(𝒛) 𝜌𝐴𝑏(1 − 𝜂
𝑧

17.8
) [kg/m] 

𝑰(𝒛) 𝐼𝑏 (1 − 𝜂
𝑧

17.8
)

3

 [m4/m] 

𝑴𝒕 75.000 [kg] 

𝑴𝒕𝒐𝒘𝒆𝒓 664.277 [kg] 

3.2 Operational Modal Analysis 

To determine the structure's dynamic characteristics, the experimental modal analysis is carried out using a 

data acquisition system composed of Sirius modular data acquisition system, data processing computer SBOX and 

DewesoftX software, with 8 shear accelerometers placed in the x and y direction at height z=1 and 2.2 m. The first 

frequency is 1.55 Hz and the second is 7.4 Hz. 

3.3 Numerical model  

The analysis of the structure using the finite element method is performed using the SAP2000, considering 

the structure as a beam element and shell elements. The tower is modeled with the geometry presented above, 

considering the bottom boundary condition the type BC1f (CEN, 2007) in the bottom for the beam element, in the 

location of the 16 anchor bolts for the shell structure, the top boundary is considered free with and without the 

action of a tip mass of 75 kg, which is the weight of the wind turbine. The simulation is performed considering the 

linear and nonlinear behavior of the material. The buckling factor was found applying a unitary concentrated load 

on top of the structure in the axial direction (-z) and lateral direction (x or y). 

4  Results and discussion 

As already shown in the literature the effectives of the Rayleigh method is intrinsically dependent on the 

equation used as approximate mode shape. Figure 2 presents the normalized mode shape obtained by FEM shell 

model and the three equations used as approximation for the deformed shape. 

 
Figure 2 – Normalized mode shapes 
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Table 2 presents the results of the frequency evaluation, with the last row presenting the relative error between 

the values of the frequencies with tip mass and the experimental one. The results are congruent with the 

experimental value, as expected all the results are higher than the exact value. The frequency results of the FEM 

models are similar for both elements. When analyzing the buckling load presented in Tab. 3, the direct method 

could provide an upper bound for the critical load, however the relative error between the analytical model and the 

FEM shell models are higher for the Rayleigh quotient than for the Timoshenko quotient, as presented in the 

literature for the axial load. The lateral load analyzed by the direct method also shown significantly higher 

differences. 

Table 2 – First eigenfrequency 

Rayleigh Method FEM Experimental 

Deformed 

shape 

𝜓(𝑧) 

1 − cos (
𝜋𝑧

2𝐿
) (

𝑧

𝐿
)

2

 
1

33
[(

𝑧

𝐿
)

4

− 4 (
𝑧

𝐿
)

3

+ 36 (
𝑧

𝐿
)

2

] Beam Shell  

Without 𝑀𝑡 2.17 Hz 2.18 Hz 2.18 Hz 2.17 Hz 2.15 Hz - 

With 𝑀𝑡 1.66 Hz 1.62 Hz 1.63 Hz 1.61 Hz 1.60 Hz 1.55 Hz 

Error 7.35 % 4.22% 4.99% 3.87% 3.16% - 

Table 3 - Buckling loads 

Axial load 

 Analytical  FEM 

Deforme

d shape  
𝜓(𝑧) 

1 − cos (
𝜋𝑧

2𝐿
) (

𝑧

𝐿
)

2

 
1

33
[(

𝑧

𝐿
)

4

− 4 (
𝑧

𝐿
)

3

+ 36 (
𝑧

𝐿
)

2

] Beam Shell 

 Pcr (kN) Error (%) Pcr (kN) Error (%) Pcr (kN) Error (%) 
Pb, FEM 

(kN) 

Error 

(%) 

Ps,FEM 

(Kn) 

Rayleigh 

quotient 

P 

286.07 49.47 229.70 20.02 239.51 25.14 

191.68 0.15 191.39 Timoshe

nko 

quotient 

P’ 

206.45 7.87 197.03 2.95 198.26 3.59 

Lateral load 

 Analytical  FEM 

Deforme

d shape  
𝜓(𝑧) 

1 − cos (
𝜋𝑧

2𝐿
) (

𝑧

𝐿
)

2

 
1

33
[(

𝑧

𝐿
)

4

− 4 (
𝑧

𝐿
)

3

+ 36 (
𝑧

𝐿
)

2

] Beam Shell 

 PLcr (kN) Error (%) 
PLcr 

(kN) 
Error (%) PLcr (kN) Error (%) 

Pb, LFEM 

(kN) 

Error 

(%) 

Ps,LFEM 

(Kn) 

Direct 

method 

Pl  

60.01 12.57 62.79 17.78 62.29 16.84 - - 53.51 

This is due to the buckling behavior of the structure, as a slender thin tower the buckling shape for an axial 

load is similar to the shape of a Euler cantilever beam, but when the load is applied in the lateral direction the 

buckling shape presents a shell buckling shape, as seen in Fig 3. (d).  
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(a) Beam axial (b) Shell axial (c) Beam lateral (d) Shell lateral 

Figure 3 – First buckling mode FEM model 

5  Conclusions 

The metallic hollow cantilever tapered tower analyzed has the first natural frequency of 1.55 Hz, axial 

buckling load 191.39 kN, and lateral buckling load of 53.31 kN.  This frequency and buckling loads are accurately 

evaluated by the application of the shell element in the finite-element model, even though this element is time-

consuming, the use of beam elements leads to inaccurate values for instability analyses and does not reflect the 

real behavior of the structure.  

Rayleigh’s method shows accurate results for frequency estimation but not for the axial buckling load, where 

the Timoshenko method proved to be more reliable. The dispersion of the buckling loads' results reflects the 

importance of accurate assessment of the structural behavior, nevertheless, further investigation on the instability 

of tapered tower with tip mass should be carried out.  
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