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Abstract. The ever increasing need for efficient, environmental-friendly and sustainable energy sources has pro-
pelled the study of energy harvesting and its applications in many fields of engineering in the last decade. Nonlinear
aspects of energy harvesting have been extensively investigated for two main reasons: improve the accuracy of the
mathematical models of systems that inherently present nonlinear behaviour, and to intentionally introduce non-
linear behaviour to the system in order to improve the harvesting performance. Electrical nonlinear aspects can
have large influence on the harvesting device. Investigations of the effect of quadratic nonlinear piezoelectrical
coupling showed that the amount of harvested power can be significantly influenced. In this paper, we show the
contributions of cubic nonlinear stiffness on the dynamic behaviour of an aeroelastic energy harvesting system.
Analytically, each case is analysed using the method of multiple scales. The first case is a linear system with
finite degrees of freedom, the second case evaluates forced oscillations of system having cubic nonlinearity. We
relate natural frequencies present in the system and target energy transfers (TET). TET uses non-linear modes and
internal resonance to transfer vibration energy, passively. Numerically, the response is calculated using a 4th order
Runge-Kutta method. The results for the analysed system indicate that cubic nonlinear stiffness has more influence
in increasing flutter speed than increasing electrical power.
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1 Introduction

Energy harvesting is a technology that has been explored by researchers as an alternative to nonrenewable
energy resources in recent years [1], because it is a promising technology to produce sustainable energy sources,
replacing fossil fuel. There are many ways to harvest energy: electromagnetic, piezoelectric, thermoelectric,
pyroelectric, photovoltaic and solar heat collector [2, 3]. Energy harvesters are designed to extract energy from
ambient mechanical vibration and transfer it to electrical devices [4]. Energy harvesting sources are very varied,
such as vibrational sources, RF sources, thermal sources, and energy transducers can also be very varied, such as
techniques for capturing energy and its storage and distribution. It is important to extract the maximum output
power to make this technology more viable. One way to maximize energy harvesting power output is to choose
the right type of piezoelectric and the right combination of parameters [5]. But harvester performance is still an
issue. The study of [6] discusses the work of a piezoelectric harvester, in which efficiency is mainly related to the
electromechanical coupling effect, damping effect, excitation frequency and electric charge. Therefore, there is
no formula to maximize the output power, each piezoelectric energy harvest has its own performance, due to its
parameters.

One of the many fields of study in which energy harvesting can be applied is in aeronautics. It has many
applications, such as generating low power electricity in various applications, ranging from aircraft and helicopters
to civil structures in high wind areas [7]. Aeroelasticity is a science that studies the behaviour and mechanical
properties of an elastic section or structure in interaction with air [8]. Flutter is a very important topic in aeroe-
lasticity, the flutter phenomenon occurs when an aircraft component presents a divergent oscillatory self-sustained
behaviour at a certain speed. It is an undesirable phenomenon in aircraft, as it can cause structural damage due
to aeroelastic instability [9]. But this oscillatory movement, caused by the phenomenon of vibration, is an inter-
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esting source of research and study for energy extraction. Besides that, one benefit of using energy harvesting in
combination with vibration is that it decreases the flutter speed [10], this means that flutter speed can be increased,
which can be an interesting topic for aeronautics. Another benefit of energy harvesting is extracting electrical
energy from vibrating vibrations and directing it to the aircraft’s electronic devices. The biggest question is how
to improve this technology so that it can collect as much energy as possible. Nonlinear elements were studied as a
way to maximize power output in the typical aeroelastic section and suppress flutter velocity. Nonlinear stiffness
components were investigated on extracted energy and nonlinear aeroelastic behaviour [11]. The work of Triplett
and Quinn [12] compares the use of nonlinear stiffness and nonlinear electromechanical coupling with the typical
section with linear stiffness and linear electromechanical coupling, quantifying vibration speed, mechanical and
electrical power. It is possible to see that the addition of nonlinear elements changes the system performance,
so that the nonlinear electromechanical coupling can increase the system’s output power, which allows extracting
more energy. Sousa et al. [13] employs an inductor synchronized tap-changer damping (SSDI) technique, capable
of dealing with the nonlinear characteristics of the electrical domain of the problem and the use of shape memory
alloys (SMA) as an alternative to conventional actuators. The nonlinearity applied to the system, by the SMA and
SSDI together, results in a better aeroelastic behaviour, for a speed range 25 % greater than in a linear system..

Multiple scales is an analytical method to provide an approximate expression of the response of a system.
These methods work for small periodic finite movements in the vicinity of a center [14]. One of the advantages
of this method is that it allows solving equations in the presence of damping and nonlinearity. The response of
nonlinear dynamics of harvesters are studied using the multiple scale method [15, 16].

2 Mathematical model

In this section, the model and the dynamical equations of the aeroelastic typical section are described. Also,
the mathematical model for aerodynamic loads is presented.

Figure 1 shows the model of the aeroelastic typical section of a system with three degrees of freedom: two
mechanical degrees of freedom, plunge (h) and pitch (α), and one electrical degree of freedom, voltage (v). The
piezoelectric coupling is associated to plunge.

Figure 1. Aeroelastic section.

The dynamical equations, based on [17], of the system presented in fig. 1, applying the nonlinear stiffness of
the cubic type associated to plunge movement and nonlinear electromechanical coupling, in dimensionless form,
are given by:

βh′′ + xαα
′′ + ζhh

′ + h+ δh3 − κ(K|h′|+ 1)v = −Lh
xαh

′′ + r2αα
′′ + ζαα

′ + γ2r2αα = Mα

ηv′ +
v

λ
+ κ(K|h′|+ 1)h′ = 0 (1)

in which h and α are the dimensionless plunge and pitch displacements, β is the dimensionless mass ratio, ζh
and ζα are the dimensionless plunge and pitch damping ratios, xα is the dimensionless chord-wise offset of the
elastic axis from the centroid, rα is the dimensionless radius of gyration, γ is the dimensionless frequency ratio,
Mα is the dimensionless aerodynamic moment, Lh is the dimensionless aerodynamic lift, κ is the dimensionless
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electromechanical coupling, λ is the dimensionless load resistance, v is the dimensionless voltage electrical, η is the
dimensionless equivalent capacitance, δ is the dimensionless nonlinear stiffness coefficient,K is the dimensionless
nonlinear electromechanical coupling coefficient, and ′ denotes differentiation over dimensionless time (τ ).

The dimensionless terms follows the definitions used by Marqui Jr and Erturk [17], and are reproduced as
follows:

h =
h

b
β =

m+me

m
ζh =

dh
mωh

ζα =
dα

mb2ωh
rα =

rα
b

γ =
ωα
ωh

v =
v

v∗
κ =

θv∗

cmbω2
h

η =
Cpv

∗2

mb2cω2
h

λ =
Rlmb

2cω3
h

v∗2

Lh =
L

mbω2
h

Mα =
M

mb2ω2
h

U =
U

ωhb
τ = ωht (2)

in which m is the typical section mass, me is the attachment mass, bxα is the offset from the elastic axis to the
centroid, h is the plunge displacement, dα and dh are the plunge and pitch damping coefficients, rα radius of
gyration, c is the span length, ωh and ωα are the uncoupled plunge and pitch natural frequencies, v is the electrical
voltage, v∗ = 1V is the reference voltage for normalisation, Rt is the load resistance, Cp is the piezoelectrical
equivalent capacitance, θ is the piezoelectrical coupling, L is the aerodynamic lift, M is the aerodynamic moment,
U is the wind speed, and t is the time.

The model for aerodynamical loads, lift (Lh) and moment (Mα), is used as presented by Dowell et al. [18]
for quasi-steady incompressible flow, and reproduced here:

L = ρ
U2

2
S
∂CL
∂α

[
α+

ḣ

U

]
M = ρ

U2

2
Se
∂CL
∂α

[
α+

ḣ

U

]
(3)

in which ρ is the air density, xf is the distance from the leading edge to the neutral line, and e =
xf

c−1/4 . Note
that eq. (3) is not in dimensionless form. To include this in eq. (1) one must use the dimensionless forms Lh and
Mα, given by eq. (2).

3 Multiple scale analysis

In this section a multiple scale analysis of the system in 1 is developed.
By substituting Lh and Mα from eq. (2) into eq. (1), using Lh and Mα from eq. (3), the dynamical equations

can be rewritten in matrix form as:

X ′′ + ĈX ′ + K̂X + Ĝ(X) + P̂ v = 0

Λv′ +
v

λ
+ κh′ = 0 (4)

in which

Ĉ = M−1C K̂ = M−1K Ĝ(X) = M−1G(X) P̂ = M−1P (5)

in which M is the mass matrix, K is the stiffness matrix, C is the damping matrix, G is the vector of
nonlinearity, and P is the electric part matrix.

In order to apply the method of multiple scales, it is convenient to write the dynamical equations in modal
form. The modal form can be used to decouple the linear terms in eq. (4). Defining the dynamic matrix of the
mechanical subsystem as A = M−1K, which has eigenvalues ω2

1,2 and eigenvectors v1,2, the modal matrix is
given by φ = [V1V2]. The modal mass, damping and stiffness matrices, force and nonlinear vectors are given by:

Cm = φ−1Ĉφ Km = φ−1K̂φ Gm(η) = φ−1Ĝ(X)φ P = φ−1P̂ φ (6)

in which Mm and Km are diagonal. Using the coordinate transformation X = φη, the dynamical equations
can be rewritten as:

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Template file for CILAMCE-PANACM-2021 full-length paper (enter here with the short title of your paper)

η′′ + Cmη
′ +Kmη +Gm(η) + Pmv = 0

v′Λ +
( v
λ

)
+ h′κ = 0 (7)

In order to separate the eq. (7), the parameter ε is implemented. In this case it is used ε2C and ε2P . Applying
multiple scales:

η1 = εη11(T0, T2) + ε3η13(T0, T2)

η2 = εη21(T0, T2) + ε3η23(T0, T2)

v = εv31(T0, T2) + ε3v33(T0, T2)

(8)

Replacing eq. (8) in eq. (7), and equaling ε, ε3 in both sides, it results in:

D2
0η11 + ω2

1η11

D2
0η21 + ω2

2η21

v31/λ+D0Λv31 +D0η11κ (9)

Pe1v31 + η13ω
2
1 − α18η

3
21 + α17η

3
21 − α16η11η

2
21 + α15η11η

2
21−

α14η
2
11η21 + α13η

2
11η21 −D0d2η21 +D2

0η13 − α12η
3
11 + α11η

3
11 −D0d1η11 + 2D0D2η11

−Pe2v31 + η23ω
2
2 +D2

0η23 − α26η
3
21 + α25η

3
21 − α24η11η

2
21 + α23η11η

2
21−

α22η
2
11η21 + α21η

2
11η21 −D0d4η21 + 2D0D2η21 − alpha20η311 + α19η

3
11 −D0d3η11

v33/λ+D0Λv33 +D2Λv31 +D0η13κ+D2η11κ (10)

The solution of eq. (9) is:

η11 = A1(T2)exp(iω1T0) + cc

η21 = A2(T2)exp(iω2T0) + cc

v31 = C1exp(−T0/(Λλ)) +
(A1κ)

(−(iexp(iT0ω1))/(ω1λ)− Λexp(iT0ω1))

−(A1κexp(iT0ω1))

(Λ− i/(ω1λ))
(11)

In which A1 and A2 are complex functions, and C1 is a constant.
By replacing eq. (11) in eq. (10), it is possible to find secular terms.

3.1 Resonant case (ω2 ≈ 3ω1)

The parameter σ is used to compare ω1 and ω2, at the resonant case ω2 ≈ 3ω1.

ω2 = 3ω1 + ε2σ (12)

It results in:

exp[i(ω2 − 2ω1)T0] = exp(iω1T0 + iσT2)

exp[3iω1T0] = exp(iω2T0 + iσT2) (13)

The secular terms found in this resonant case are::

−(A1Pe1κ)

(Λ− i/(ω1λ))
− iA1d1ω1 + 2iA1D2ω1 − 2A1A2A2α16 + 2A1A2A2α15 − 3A2

1A1α12 + 3A2
1A1α11+

(A1
2
A2α13 −A1

2
A2α14)exp(iT2σ) (14)
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−iA2d4ω2 + 2iA2D2ω2 − 3A2
2A2α26 + 3A2

2A2α25 − 2A1A1A2α22 + 2A1A1A2α21+

(A3
1α19 −A3

1α20)exp(−iT2σ) (15)

It is convinient to write A in the polar form:

Am =
1

2
amexp(iθm) (16)

in which m = 1, 2.
Replacing eq. (16) in eq. (14) and eq. (15), and separating the result in real and imaginary parts:

8ω1(a′1 +
d1a1

2
− ΛPe1a1κλ

2

2(Λ2ω2
1λ

2 + 1)
) + (a21a2α13 − a21a2α14) sin(γ) = 0

8ω2(a′2 +
d4a2

2
) + (a31α19 − a31α20) sin(γ) = 0

8ω1(− Pe1a1κω
2
1λ

2(Λ2ω2
1λ

2 + 1)
+ a1θ

′
1) + (a21a2α13 − a21a2α14) cos(γ)+

a1(−2a22α16 + 2a22α15 + 3a21α12 − 3a21α11) = 0

8ω2a2θ
′
2 + (a31α19 − a31α20) cos(γ) + a2(−3a22α26 + 3a22α25 − 2a21α22 + 2a21α21) = 0 (17)

in which γ = θ2 − 3θ1 + σT2.
To eliminate θ1 and θ2 of eq. (17), it is used γ.

a2γ
′ = a2σ −

3Pe1a1a2κω1λ

2Λ2a1ω2
1λ

2 + 2a1
+
a31α20 cos(γ)

8ω2
− a31α19 cos(γ)

8ω2
− 3a1a

2
2α14 cos(γ)

8ω1
+

3a1a
2
2α13 cos(γ)

8ω1
+

3a32α26

8ω2
− 3a32α25

8ω2
+
a21a2α22

4ω2
− a21a2α21

4ω2

−3a32α16

4ω1
+

3a32α15

4ω1
+

9a21a2α12

8ω1
− 9a21a2α12

8ω1
(18)

The equations are reduced to imaginary part of eq. (17) and eq. (18). To simplified eq. (17), the imaginary
part is added, and sin(γ) is eliminated:

((4Λ2a22α14 − 4Λ2a22α13)d4 + 8Λ2a2a
′
2α14 − 8Λ2a2a

′
2α13)ω2

1ω2

((Λ2α20 − Λ2α19)ω3
1λ

2 + (α20 − α19)ω1
+

((4Λ2a21α19 − 4Λ2a21α20)d1 − 8Λ2a1a
′
1α20 + 8Λ2a1a

′
1α19)ω3

1

((Λ2α20 − Λ2α19)ω3
1λ

2 + (α20 − α19)ω1

+
(4ΛPe1a1(T2)a1α20 − 4ΛPe1a1(T2)a1α19)κω2

1)λ2

((Λ2α20 − Λ2α19)ω3
1λ

2 + (α20 − α19)ω1)

+
((4a22α144a22α13)d4 + 8a2a

′
2α14 − 8a2a

′
2α13)ω2

((Λ2α20 − Λ2α19)ω3
1λ

2 + (α20 − α19)ω1
+

((4a21α19 − 4a21α20)d1 − 8a1a
′
1α20 + 8a1a

′
1α19)ω1)

((Λ2α20 − Λ2α19)ω3
1λ

2 + (α20 − α19)ω1
= 0 (19)

The approximated solution for the steady state motion is given by substituting eq. (20) in eq. (18) and eq.
(19).

a′1 = a′2 = γ′ = 0 (20)

4 Numerical analysis

The response of the system is calculated through numerical simulation, using a 4th order Runge-Kutta
method. The flutter speed was determined with an optimisation procedure based on the interval halving method (or
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bissection method). In the this method, one-half of the current interval of uncertainty is discarded in every stage,
until the right solution is found, for the middle point of the final interval (Rao, 2009). From a initial guess for the
interval, which is taken based on the flutter speed of the linear system, and with the other parameters fixed, the
optimisation procedure seeks to minimise the difference between consecutive peaks of the response in time. If the
difference is zero, this gives the condition of self-sustained oscillation. Therefore, the objective function is given
by:

f(U) = |Df | − E (21)

in whichDf is the difference between the penultimate amplitude peak and last amplitude peak, andE is a tolerance.
Equation (21) allows the reasoning that in order for flutter to happen, the distance between the peaks must be 0.
Since the equations are solved numerically, a tolerance must be considered.

The values of parameters used here are based on values from [17]: β = 2.5940, rα = 0.5467, γ = 0.5090,
ζh = 0.0535, ζα = 0.1102, xα = 0.25,ρ = 1.2754kg/m3 , b = 0.76 m, κ varies from 2 × 10−6 to 8 × 10−6 até
, η = 3.66 × 10−9, λ = 0.48 × 109, m = 92.53 kg, ωh = 50 rad/s. The initial conditions used are h = 0.1,
α = 0.1, h′ = 0 e α′ = 0 e v = 0.

Figure 2 shows the variation of flutter speed U∗ as a function of electromechanical copuling κ. The result
indicates that U∗ increases with κ. Also, the presence of nonlinear stiffness increases the values of U∗ for all
values of κ in this range. For example, at κ = 8 × 10−6, there is an increase of 7, 679% in U∗ when nonlinear
stiffness is included. Increasing flutter speed is interesting for aeronautics, because it can indicate that flight speed
can be increased.

2 3 4 5 6 7 8

κ
×10-6

1.6

1.7

1.8

1.9

2

U
∗

linear stiffness

nonlinear stiffness

(a)

Figure 2. Flutter speed as a function of the electromechanical coupling.

————————————————————————–

5 Conclusions

In this work we explore the method of multiple scales to analyse energy harvesting in aeroelastic system in
flutter condition, the approximated solution for the steady state motion of the system with nonlinear stiffness was
calculated through multiple scales. The multiple scales is an interesting method to analyse flutter condition, and,
posteriorly, the TET (target energy transfers) at this type of aeroelastic system.

The flutter speed as a function of electromechanical coupling was found by an otimization method (interval
halving method). The results indicates that flutter speed increases with electromechanical coupling. Also, the
presence of nonlinear stiffness increases the values of flutter speed, which is interesting for aeronautics, because it
can indicate that flight speed can be increased.
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