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Abstract. The dynamic structural problems involving contact/impact are strongly nonlinear, and can lead to spu-
rious numerical oscillations, generating unsatisfactory results or even convergence problems depending on the
applied temporal and spatial discretization techniques. The use of Newmark method with traditional parameters is
proven to be inefficient in this case, making necessary the application of specialized time integration techniques.
Some authors propose alternative values for the Newmark parameters to circumvent this problem, introducing a
numerical damping in the system, and reducing artificially the high frequency oscillations. However, this strat-
egy is highly sensitive to the time discretization, decreasing the accuracy of the results when the time steps are
not sufficiently refined. As an alternative, one can employ the alpha-generalized time integration method, which
allows the control of numerical dissipation by using appropriate parameters. In this work, we apply different com-
binations of said parameters, including the ones which reproduce the Newmark method and its variations, in order
to analyze the numerical stability of two-dimensional impact problems. The applied computational framework
is the positional finite element method, which is characterized by using positions as nodal parameters, instead of
displacements, and naturally considering geometrical nonlinearities in its formulation. The applied constitutive
model is the Neo-Hookean, for large strain. For the numerical implementation of structural contact, we make
use of a node-to-segment model with Lagrange multipliers, employing a contact detection algorithm based on the
intersection of trajectories. Finally, a representative numerical example is proposed with different time integra-
tion techniques. The results indicate that the adequate choice of alpha-generalized parameters can lead to quite
significant improvements to the numerical stability when compared to the traditional Newmark method and its
modifications.
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1 Introduction

The Finite Element Method has been applied to nonlinear problems for a significant time, as can be seen in
works such as Hughes and Carnoy [1], with shell elements, Schulz and Filippou [2] with beam elements in La-
grangian formulation and Crisfield [3] with solid elements. Seeking an alternative approach, Coda [4] introduces
the positional finite element method, which employs degrees of freedom in positions, instead of traditional dis-
placements. This approach has been successfully applied to static and dynamic problems with trusses elements [5]
and shells [6] in several applications, including structural contact cases [7, 8]. This formulation is more compact,
as can be seen in Avancini and Sanches [9], making its writing simpler and more straightforward. Furthermore, the
position-based formulation is naturally and truly isoparametric, since its nodal parameters (problem unknowns)
are the current coordinates of the solid.

The contact between deformable solids can be numerically modeled in two steps: detection of the intersection
point and imposition of non-penetration conditions, with the solution procedure being directly affected by the
discretization technique. One of these techniques is the node-to-node (NTN), used by Mashayekhi et al. [10],
characterized by having only a nodal base and requiring an appropriate coincidence of the meshes, therefore
unsuitable for general large displacement problems. By means of the node-to-segment (NTS) scheme, or node-
to-surface for 3 dimensions, introduced by Hughes et al. [11], it is possible to distinguish the contact interfaces
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as slave-nodes (defined by nodes of the slave-body) and master-segments or surfaces (defined by the boundary
elements on the master-body). Another alternative method is the segment-to-segment (STS), or surface-to-surface
for 3 dimensions, found in Puso and Laursen [12], which proposes an approach with high precision in the contact
constraints. For a more detailed discussion on these discretization methods, one can refer to Wriggers [13].

Regarding the contact modelling in dynamic analyses, there is a challenge in temporal integration due to the
instabilities caused by high-frequency oscillations. In order to control the numerical dissipation and stabilize the
results in these cases, integration methods such as the alpha-Generalized [14] can be used. Arnold and Bruls [15]
studies the convergence of this integrator to constrained mechanical systems, and Siqueira [16] applies the method
to the simulation of sliding connections with restrictions in the system movement. By changing its parameters,
the alpha-Generalized method can also represent other temporal integrators, such as Newmark’s [17] with its
traditional parameters (γ = 1/2 and β = 1/4) or with those proposed by Hu [18] (γ = 3/2 and β = 1). The
latter is also suitable for impact problems, introducing a numerical damping on the system which reduces the high-
frequency oscillations. However, as can be seen in Carvalho [7], Hu’s integrator is greatly sensitive to the time
discretization, which can lead to inconsistent and inaccurate results.

In this work, we propose a comparative study between time integrator methods for a large displacement and
large strain two-dimensional impact problem. The applied numerical framework is the Positional Finite Element
Method, described briefly in the sections 2 and 3. For the contact model, discussed in section 4, we employ a node-
to-segment discretization, with a detection strategy based on the intersection of trajectories, and imposition of
constraints via the Lagrange multiplier method. The alpha-Generalized method, described in section 5, is applied
as a general time integrator, and different choices of parameters are discussed in the numerical example shown
in section 6, including the one corresponding to Hu’s integrator [18], and the ones proposed originally by Chung
and Hulbert [14] for dealing with the high-frequency oscillations. The results and conclusions of the analysis are
discussed in section 7.

2 Solid mechanics

The state of mechanical equilibrium occurs when the variation in the total mechanical energy functional (Π)
is null, which translates the principle of stationarity. In this work, the functional Π is composed by the sum of the
potential energies of the external forces (P), strain (U), kinetic (K) and contact (C). The latter is discussed in more
details on section 4 . For the remaining parts, the equilibrium is expressed in variational form as

δΠ = −
∫

Γ0

q · δy dΓ0 −
∫

Ω0

b · δy dΩ0︸ ︷︷ ︸
δP

+

∫
Ω0

S : δE dΩ0︸ ︷︷ ︸
δU

+
1

2

∫
Ω0

ρ0ÿ · δy dΩ0︸ ︷︷ ︸
δK

= 0, (1)

where q and b denote the conservative forces distributed along the initial surface Γ0 and the initial volume Ω0,
respectively, ρ0 is the initial density of the material, y denotes the position vectors, S is the second Piola-Kirchhoff
stress, and E is the Green-Lagrange strain, defined as

E =
1

2
(AT ·A− I), (2)

with A denoting the deformation gradient, and I the identity tensor.
The second Piola-Kirchhoff stress is the energetic conjugate of E, and can be defined as S = ∂ue/∂E, in

which ue is the strain energy density, defined by the constitutive model of the material. In this work, we apply an
hyperelastic model of Neo-Hookean type, written as:

ue = µ(trE− ln J) +
Λ

2
(ln J)2, (3)

where Λ and µ are the Lamé constants of the material, J = det(A) is the Jacobian, and tr (·) denotes the trace of a
tensor, i.e. trE = E : I.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Darcy Hannah Falcão Rangel Moreira , Péricles Rafael Pavão Carvalho, Rodolfo André Kuche Sanches

3 Positional Finite Element Method

For the two-dimensional finite element implementation, we apply 10-node triangular elements (T10) with cu-
bic polynomials as shape functions. For each element, the positions and accelerations can be written, respectively,
as y = ϕαyα and ÿ = ϕαÿα, where, for each node α, yα is the position, ÿα is the acceleration, and ϕα is the
shape function. From the Galerkin method, one can also write δy = ϕαδyα. Then, by using the arbitrarity of δyα,
the equilibrium equation (1) can be expressed as

f int + f iner − fext = 0, (4)

where f int, f iner and fext represent the internal, inertial and external forces, respectively, and can be written, for
each node α, as

f intα =

∫
Ω0

S :
∂E

∂yα
dΩ0, f inerα =

1

2

∫
Ω0

ρ0ϕ
αϕβÿβ dΩ0, fextα =

∫
Γ0

ϕαq dΓ0 +

∫
Ω0

ϕαb dΩ0. (5)

The non-linear Equation (4) can be solved by the Newton-Raphson method. For further details regarding the
Positional Finite Element Method, one can refer to Coda [19].

4 Contact model

For the numerical implementation of contact, we adopt the node-to-segment strategy, in which the contact
interfaces are treated in pairs, one discretized by nodes, called slave-nodes, and other discretized by curved line
elements, called master-segments.

4.1 Contact detection

The contact detection is based on the intersection of slave-node and master-segment trajectories. The trajec-
tories are mapped through a ‘dimensionless time’ parameter θ, going from 0 (previous step) to 1 (current step).
The position of a slave-node between the steps can be approximated in terms of θ by the linear interpolation

yN (θ) = θyNs+1 + (1 − θ)yNs (6)

where yNs+1 and yNs represent the positions of the node on the current and previous time step, respectively.
For the master-segment, the positions are determined by the finite element approximation y(ξ) = ϕα(ξ)yα,

where ϕα is the shape function of each node α in the curved line element, parametrized by the dimensionless
coordinate ξ, with values from −1 to 1. Therefore, for an arbitrary dimensionless time θ, the positions on a
master-segment can be interpolated by the equation

yS(ξ, θ) = ϕα(ξ)
[
θyαs+1 + (1 − θ)yαs

]
. (7)

The intersection of trajectories is calculated by the equation yN (θ) = yS(ξ, θ), which, for the two dimen-
sional case, leads to a non-linear system of two equations with two unknowns (ξ and θ), solved in this work by
the Newton-Raphson method. The contact between a slave-node and a master-segment is activated if the solution
to this system is valid, i.e. if the resulting θ is a value between 0 and 1, and ξ is a value between −1 and 1.
Furthermore, it is necessary that the slave-node has penetrated the master structure, i.e. the normal projection (gn)
of the slave-node on the master-segment is less than or equal to zero on the current step:

gn =
[
yNs+1 − ϕα(ξ)yαs+1

]
· n(ξ) ≤ 0 (8)

where n is the unitary normal vector of the master-segment on the contact point ξ, directed to outside of the solid
domain.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



The influence of time integrator on contact/impact problems using the positional finite element method

4.2 Imposition of contact constraints

After the contact identification, it is necessary to activate the contact restriction for the slave-nodes and
master-segments involved. To apply the impenetrability condition in the frictionless case, one must add the con-
straint gn = 0 to the system. In the present work, this condition is imposed by the Lagrange multiplier method.
Through this technique, for each contact pair, an additional parcel C is added to the mechanical energy functional,
expressed as C = λgn, where λ is a new nodal parameter of the system called Lagrange multiplier. Then, the
variation δC = gnδλ+ λδgn is added to the equilibrium equation (1). From eq. (8), one can write

δC = gnδλ+ λnδyN − λϕαn δyα + λ
[
yN − ϕαyα(ξ)

]
· ∂n
∂yα

δyα, (9)

where the variables are taken on the current step. From the arbitrarity of δλ, δyN and δyα, new forces of contact
are added to the equilibrium equation (4). For the slave-node, the contact force is expressed as

f contN = λn, (10)

and for the master-segment, the contact force in each node α is expressed as

f contα = −λϕαn + λ
[
yN − ϕαyα(ξ)

]
· ∂n
∂yα

. (11)

Furthermore, a new equation is added to the system, called non-penetration condition, which reads

gn =
[
yN − ϕαyα

]
· n(ξ) = 0 (12)

It is important to note that λ has the physical meaning of normal contact force, as can be induced from
eq. (10). Since the current model does not account for adhesion, it is expected that λ only assumes negative values
(which correspond to compression forces). Therefore, the condition for contact deactivation is λ ≥ 0.

5 Time integrator

One of the most commonly adopted time integrators for dynamic analyses of structural problems is the
Newmark-β method, which derives from the equations

ys+1 = ys + ẏs∆t+

[(
1

2
− β

)
ÿs + βÿs+1

]
∆t2 (13)

ẏs+1 = ẏs + (1 − γ)∆tÿs + γ∆tÿs+1 (14)

where the indexes (·)s+1 and (·)s refer to the current and previous time steps, respectively, ∆t is the time interval
between time steps, and γ and β are the Newmark parameters, controlling the stability and precision of the method.
The traditional values for structural analyses are γ = 1/2 and β = 1/4, which result in an unconditionally stable
method with second-order accuracy. However, these values are not suitable for high frequency impact problems.
As an alternative, Hu [18] proposed the parameters γ = 3/2 and β = 1, which eliminates the high-frequency
oscillations by introducing a numerical damping on the system.

A more general time integrator, applied in this work, is the alpha-generalized method, characterized by
performing the integration in an intermediate time instant ‘s+ 1 − α’, where the variables are calculated in terms
of previous and current values by the linear interpolation (·)s+1−α = (1 − α)(·)s+1 + α(·)s. In the equilibrium
equation, we take α = αm for the inertial forces, and α = αf for the remaining parcels, including the contact
forces, resulting in the following equation:

(1 − αf )(f ints+1 + f conts+1 − fexts+1) + αf (f ints + f conts − fexts ) + (1 − αm)f iners+1 + αmf iners = 0 (15)
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For the identification of velocities and accelerations on the current step, the Newmark equations (13) and (14)
can still be used. Therefore, the time integrator is defined by four parameters: αm, αf , γ and β. We note that, by
taking αm = αf = 0, the equilibrium equation is evaluated purely on the current time step, falling back to the
Newmark integrator.

In order to guarantee consistency and stability for the alpha-generalized method, Chung and Hulbert [14]
proposed the choice of parameters in terms of a spectral radius ρ∞, following the equations

αm =
2ρ∞ − 1

ρ∞ + 1
and αf =

ρ∞
ρ∞ + 1

, (16)

and, in order to maximize the high-frequency dissipations and guarantee the second-order accuracy,

γ =
1

2
− αm + αf and β =

1

4
(1 − αm + αf )2. (17)

According to Chung and Hulbert [14], the spectral radius is a measure of numerical dissipation, defined in [0, 1],
with ρ∞ = 1 corresponding to no dissipation, and smaller values corresponding to greater dissipation.

6 Numerical example: impact between two deformable bodies

The analysed example consists of a cylinder that, under the action of gravity, falls onto a rectangular prism
of negligible self-weight. This problem is strongly nonlinear due to dynamic contact (impact), and its numerical
solution is quite unstable. Both structures are considered deformable, with materials described using the Neo-
Hookean hyperelastic model. The geometry and boundary conditions of the problem are indicated in Fig. 1(A).
Taking advantage of the problem’s symmetry, only half of the structures are discretized, and appropriate boundary
conditions are applied to the symmetry axis. The density of the material is taken as ρ = 0.25 kg/m3, and the Lamé
constants are Λ = 200 N/m2 and µ = 15 N/m2.

Figure 1. Problem geometry and boundary conditions (A) and Cauchy stress variation in the structure in its
deformed configuration for different moments of the analysis (B), (C), (D), (E), (F), for ρ∞ = 0.1.

Some simulations were performed with different values for the alpha-generalized integrator parameters and
∆t. For the first analysis, the parameters are taken as αf = 0, αm = 0, γ = 3/2 and β = 1, and the time
discretizations as ∆t = 1, 875 · 10−4s and ∆t = 5, 85 · 10−6s. It should be noted that, for these values, the
alpha-Generalized method falls back to the Newmark integrator with the parameters suggested in Hu [18]. For the
next analysis, we follow the proposal of Chung and Hulbert [14] and base the parameters on a spectral radius ρ∞.
Seeking an optimal dissipation of high-frequencies, two parameters are adopted: ρ∞ = 0.6 and ρ∞ = 0.1, with
∆t = 1,875 · 10−3 s in both.
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Figure 2. Normal Cauchy stress distribution in the vertical direction at B (A) and vertical displacement at A (B)
versus time for different simulations

Figure 1(B)-(F) illustrates the deformed configurations for different time steps in the case with ρ∞ = 0.1, dis-
playing the vertical Cauchy Stress (σy) in colour map, and Figure 2 shows, for each of the applied time integrators,
the results over time of σy at point B and vertical displacement at point A.

7 Conclusion

The results from section 6 indicate that the choice of parameters for the alpha-Generalized method, as well
as the time discretization, plays a major role on impact problems. As already discussed in Carvalho [7], Hu’s time
integrator [18] introduces on the problem a numerical dissipation that is highly dependent to the time discretization,
possibly leading to inconsistent results. This can be observed particularly on Figure 2(A), where the Cauchy stress
results are shown to be rather unstable when using this time integrator, and discrepant values are found for the
two different time discretizations adopted. For the case with ρ∞ = 0.6, we observe similar instabilities on the
Cauchy stress results, but the displacement values on Figure 2(B) are higher than the ones obtained with Hu’s time
integrator after the impact, indicating a less dissipative behaviour, as predicted by the study of Chung and Hulbert
[14]. On the other hand, the more dissipative result was found with ρ∞ = 0.1. In this case, the displacement
graph shows a response similar to the ones in ρ∞ = 0.6, but the Cauchy stress displays a consistent behaviour
when compared to the other cases, despite having a visible damping effect. In conclusion, the alpha-Generalized
parameters based on the proposal of Chung and Hulbert [14] seem to be more suitable for high-frequency impact
problems when compared to the Newmark integrator with Hu’s proposed parameters, but a proper identification
of the ρ∞ parameter may be necessary in order to achieve an adequate balance between instability and excessive
damping, improving the accuracy of the results.
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