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Abstract. Concrete is classified as a quasi-brittle material and exhibit a gradual decline in response of the stress-
strain law in inelastic regime. Upon reaching its strength limit, this material starts to crack. This cracking process
critically influences the material’s response in its state of stress, which makes crack evaluation an important factor
in the analysis of concrete structures. A numerical strategy that can be used to analyze cracks is the Finite Element
Method and the cracks can be classified as smeared and discrete. The smeared approach considers that a set of
small size cracks are distributed along the finite element. In the discrete approach, which will be used in this work,
the crack is considered a geometric discontinuity in the finite element mesh and its analysis involves the following
essential keys: a constitutive model for describing the material; a crack propagation criterion; an adequate proce-
dure for remeshing, and an efficient technique for solving a system of nonlinear equations. This work proposes
the implementation of a discrete cohesive crack model with mesh redefining based on nodal duplication capable of
evaluating the crack behaviour in concrete beams subjected to bending.
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1 Introduction

Concrete is a quasi-brittle brittle material that presents a gradual decrease in response to stress-strain. The
structures built with this material have a behaviour influenced by the nucleation and propagation of cracks. Thus,
the use of appropriate criteria for the crack identification and description of its path are indispensable for the anal-
ysis of concrete structures. After crack nucleation, it is necessary to describe the undamaged and damaged regions
of the material in different ways, because the cracked region of the material presents a nonlinear behaviour. This
description can be accompanied by constitutive models capable of representing the damage process in concrete.
Several computational methods have been developed to model the fracture efficiently and accurately [1]. The finite
element method is one of those methods that can be used for crack modelling. Using this method, the two most
frequent forms of crack representation are the smeared crack model and the discrete crack model [2]. The smeared
crack model considers that a set of small cracks are distributed along the finite element and the solid is treated as
continuous. Crack propagation in this model is simulated by reducing material stiffness and strength. [3]. Further-
more, according to Yang and Chen [2], the constitutive laws are defined by nonlinear stress-strain relations with
strain softening. The discrete model, which is the model used in this work, considers the crack as a geometric
discontinuity and is generally preferred in the presence of a finite set of cracks [3]. A model that uses the finite
element method to model a discrete crack must have an adequate constitutive model to represent the softening
behaviour of the concrete [2]. The cohesive crack model or fictitious crack model developed by Hillerborg et al.
[4] is an efficient model for this type of modelling because it considers the action of stresses in the fracture process
zone in a narrowly open crack [5]. This zone is responsible for the concrete softening behavior. In addition, the
fictitious crack model simulates the gradual opening of cracks, which is generally how crack propagation occurs
in a concrete structure. Other factors that must be considered in discrete crack modelling are: the use of an ade-
quate crack propagation criterion, an efficient mesh redefinition technique, an accurate mesh mapping technique to
transfer the variables from the old mesh to a new one, and an efficient numerical solution technique to solve sys-
tems of nonlinear equations [2]. This work proposes the implementation of a discrete crack model that simulates
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the cohesion through uniaxial elements and as a crack propagation criterion it can use different classical strength
criteria, such as Rankine and Mohr-Coulomb criteria. The proposed model adopts the nodal duplication strategy
to create the crack in the finite element mesh and the Newton-Raphson method associated with a control method
suited to the problem for solving the nonlinear equation system.

2 Cohesive Discrete Crack Model

Since concrete has a behaviour directly influenced by the nucleation and propagation of cracks, the study and
adequate modelling of cracks become essential factors for the analysis of these structures. The model proposed in
this work for modelling cracks is described in the following sections. The section 2.1 corresponds to the formu-
lation of the cohesive model, 2.2 refers to the propagation criteria, and 2.3 represents the crack accommodation
strategy in the finite element mesh.

2.1 Cohesive Crack Model

The cohesive crack model or fictitious crack model can describe the process of energy dissipation in quasi-
brittle materials during the cracking process [6]. In this model, it is assumed the existence of a fracture process zone
that transfer stresses until the crack opening reaches a critical value. Another consideration made is that the non-
cracked region of the concrete has an elastic behaviour, thus there is no energy dissipation in the undamaged region
of the material [7]. When the crack opens, the stress does not go to zero immediately, this value decreases according
to the increase in the crack width [4]. Thus, this residual resistance is represented by cohesive stresses that tend to
close the crack. The cohesion of the discrete crack in this work will be simulated by uniaxial elements, whose only
displacement allowed will be in the direction of its axis, which characterizes the cohesion corresponding to mode
I of crack opening. These elements will be associated with cohesive laws to represent the material’s response to
crack opening. Figure 1 shows two cohesive laws as presented by Petersson [8]. In Fig. 1(a) is a linear cohesive
law, and the parameters ft, wc and Gf respectively represent the tensile strength of the material, the critical crack
opening and the fracture energy; and in Fig. 1(b) is a bilinear cohesive law.
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Figure 1. Cohesive laws

According to Carpinteri et al. [9] and Barpi [10], the cohesive crack model will be described numerically
below. The Fig. 2 represents a cracked solid where cohesive stresses act. Applying the principle of virtual work to
formulate the problem in terms of finite element approximation, the following expression is obtained:

∫
V

δεεεTσdV =

∫
V

δuTbdV +

∫
S

δuTpdS + δuTF, (1)

where δuT represents the vector of virtual displacements, δεεεT is the vector of virtual strains, σ is the vector of
stresses, b is the vector of body forces, F is the vector of concentrated forces and p is the surface force vector.

According to the cohesive crack model, the fracture process zone near to the crack tip can be represented by
closing tractions pc acting on both sides of the crack [9]. The contribution of the surface forces will then be given
by the cohesive force pc and by the surface force ps acting on the crack surface in which the cohesive forces are
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Figure 2. Cracked solid

active Sc [10]. Considering the surface forces divided into pc and ps and based on the equilibrium across the crack
surface, the eq. (1) can be rewritten as follows:

∫
V

δεεεTσdV =

∫
V

δuTbdV +

∫
S−Sc

δuTpsdS +

∫
S+
c

δu+T

pu
+dS +

∫
S−
c

δu−T

pu
−dS+

∫
S+
c

δu+TTTLT(u+ − u−)dS −
∫
S−
c

δu−TTTLT(u+ − u−)dS + δuTF, (2)

where pu is the ultimate tensile strength vector, T is the transformation matrix from the global to the local system,
L is the cohesive constitutive matrix in the local system of reference and the + and - signs correspond to the positive
and negative sides of the crack as shown in Fig. 2.

The fifth and sixth term after the equality of eq. (2) can be rewritten in matrix form as follows:

∫
Sc/2

 δu+

δu−


T  TT 0

0 TT

 L −L

−L L

 T 0

0 T

 u+

u−

 dS. (3)

According to the finite element method, the internal displacements can be expressed through shape functions
N and nodal displacements U by the following expression:

u(x, y, z) = N(x, y, z)U (4)

The derivative of eq. (4) gives the strain field that can be written as follows:

εεε = BU. (5)

Choosing an appropriate constitutive law for the undamaged region of the material, the stress-strain relation-
ship can be obtained as follows:

σ = D(εεε− ε0ε0ε0) + σ0 = DBU−Dε0ε0ε0 + σ0, (6)

where D represents the constitutive matrix, ε0ε0ε0 and σ0 are the initial states of strain and stress.
Replacing eqs. (4), (5) and (6) in eq. (2), the following expression is obtained:
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δUT


∑

e

∫
V

BTDBdV

U−
∑
e

∫
V

BTDε0ε0ε0dV +
∑
e

∫
V

BTσ0dV

 =

δUT

∑
e

∫
V

NTbdV +
∑
e

∫
S−Sc

NTpsdS

+ δU+T
∑
e

∫
S+
c

NTp+
u dS + δU−T

∑
e

∫
S−
c

NTp−
u dS (7)

 δU+

δU−


T

∑
e

∫
Sc/2

 NTTT 0

0 NTTT

 L −L

−L L

 TN 0

0 TN

 U+

U−

 dS

 ,

where e indicates a generic element of the mesh. The independent terms of U from eq. (8) are terms known to the
system and represent forces. The terms dependent on U, on the other hand, contribute to the stiffness matrix and
therefore we can rewrite eq. (7) as:

KU = Rb +Rs +RU+ +RU− +Rσ0 +Rε0 + F, (8)

where K is the stiffness matrix of the problem that considers the classical stiffness matrix and the stiffness due to
cohesion. Before crack nucleation, the portion of the stiffness matrix K referring to cohesion is null. Therefore, a
linear elastic stress-strain relationship is considered throughout the material. The terms Rb and Rs from eq. (8)
represent, respectively, the contribution of body forces and surface forces and are described by eqs. (9) and (10)
below:

Rb =
∑
e

∫
V

NTbdV, (9)

Rs =
∑
e

∫
S−Sc

NTpsdS. (10)

The contribution of cohesive forces are calculated by the expression

RU+ =
∑
e

∫
Sc

NTpu+dS, RU− =
∑
e

∫
Sc

NTpu−dS. (11)

Considering F proportional to a scalar λ and that there are no surface forces or initial deformations and
stresses, Rs, Rσ0 and Rε0 will be null. Therefore, eq. (8) results in

KU = λF1 +Rb +RU+ +RU− = λF1 + F2. (12)

To obtain the solution of the problem, the expressions KU1 = F1 and KU2 = F2 = Rb +RU+ +RU−

must be solved. Consequently, the solution to the problem will be:

U = λU1 +U2. (13)

Obtained the value of the displacements, it is possible to calculate the stress values and verify if there was
nucleation or crack propagation.
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2.2 Crack propagation criteria

As a criterion for crack nucleation and propagation, different classical strength criteria were implemented.
One of these criteria is the Rankine criterion. As presented by Chen and Han [11], this criterion considers that
failure will occur when the maximum principal stress at a point reaches the value of the material’s tensile strength,
regardless of the normal or shear stress values in the other planes through this point.

Another criterion is the Mohr-Coulomb criterion. This second criterion considers the maximum shear stress
as a decisive factor for the occurrence of the failure [11]. Due to the main stresses (σ1 ≥ σ2 ≥ σ3) the Mohr-
Coulomb criterion can be written as:

σ1
1 + sinφ

2c cosφ
− σ3

1− senφ

2c cosφ
= 1, (14)

where c represents cohesion and φ is angle of internal friction. The variables c and φ are experimentally deter-
mined.

2.3 Nodal Duplication Strategy

After verifying that there was crack nucleation or propagation, the strategy used to accommodate the crack in
the finite element mesh is the nodal duplication, which is shown in Fig. 3. This is a simple strategy that alters the
mesh only in the region where crack nucleation and propagation occurred. Nodal duplication will occur according
to the following steps: in the phase of updating variables from one incremental step to the next within the technique
of solving nonlinear equations, it will be verified at which points of the mesh the resistance criterion was reached;
from that point, the node that reached the limit stress, according to the adopted criterion, will be duplicated with the
transfer of the state variables to the new node; once this is done, the incidence of the elements around the duplicated
node will be redefined as a function of the crack orientation, which leads to the insertion in the finite element mesh
of a discontinuity that represents the crack; finally, the element representing cohesion will be inserted between the
new node and the existing one in the direction perpendicular to the crack propagation connecting the two altered
nodes of the mesh.
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Figure 3. Nodal duplication strategy

3 Numerical Examples

The results obtained in this section are derived from the implementation of the proposed discrete cohesive
crack model in the open access and open source computational system INSANE (INteractive Structural ANalysis
Environment) developed at the Structural Engineering Department of the Federal University of Minas Gerais. In
the current phase of the work, the insertion of the crack in the mesh of finite elements and cohesive elements
were implemented and the influence of the cohesive forces represented by eq. (11) is in the implementation stage.
Therefore, the results obtained and presented here are of a brittle crack propagation. The first numerical example
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is represented by Fig. 4 and it is a simply supported beam subjected to a load concentrated in the middle of the
span of 15 kN. The beam is 0.80 m high, 1.80 m long, and 0.10 m thick. The material has Young’s modulus E = 20
GPa, Poisson’s ratio ν = 0.2 and tensile strength ft = 2.5 MPa. As shown in Fig. 4(a), quadrangular finite elements
were used to model the example. Analyzing Fig. 5, which corresponds to the equilibrium path of the vertical
displacement of the node loaded in Fig. 4, it can be seen the brittle propagation of the discrete crack, whose final
deformed state is represented in Fig. 4(b).

(a) Original configuration of the beam (b) Deformed beam configuration

Figure 4. Quadrangular mesh beam subjected to three-point bending

Figure 5. Equilibrium path of the vertical displacement of the loaded node

The second example is a beam with an initial crack subjected to a concentrated load in the middle of the span
of 1 kN. This beam was modelled using a three-node triangular finite element mesh and the original configuration
of the mesh is shown in Fig. 6(a). The dimensions of this example are: length of 2.50 m, height of 0.80 m, and
thickness of 0.50 m. The material has Young’s modulus E = 33.8 GPa, Poisson’s ratio ν = 0.2 and tensile strength
ft = 3.5 MPa.

(a) Original configuration of the beam (b) Deformed beam configuration

Figure 6. Random mesh beam with initial crack subjected to three-point bending

Observing Fig. 6(b), it can be seen that the crack has propagated in the middle of the span and went towards
loaded node. This propagation was a brittle propagation, as shown in Fig. 7, which corresponds to the equilibrium
path of the load application node.
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Figure 7. Equilibrium path of the vertical displacement of the loaded node

4 Conclusions

This paper has presented a discrete cohesive crack model based on the finite element method that is so far able
to describe the brittle crack propagation in concrete beams subjected to bending. Cohesion modelling was made
from the insertion of uniaxial elements that simulate the crack opening mode I. The proposed model also allows
the use of different classic strength criteria to verify crack propagation. One of the essential factors for modelling
discrete cracks is the redefinition of the finite element mesh for crack insertion. In this work, a simple redefinition
strategy, called nodal duplication, was adopted, which redefines the mesh in the region only where the crack was
inserted. From the observed results, it can be concluded that the proposed model can efficiently simulate the brittle
propagation of the discrete crack so far, and the crack propagation results considering the cohesion will be possible
after the completion of the current stage of implementation.
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