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Abstract. This work aims to develop a finite element formulation for a numerical analysis for long-term loads of 

unbonded prestressed concrete beams. The finite element formulation consists of unidimensional elements of plane 

frames with models of 7 degrees of freedom per element, based on the Euller-Bernoulli beam theory for the 

reinforced concrete section and a truss element for the simulation of the unbonded tendons. The formulation was 

developed for the examples of beam under long term loads with the purpose of evaluating the effects due to creep, 

shrinkage, and relaxation of the prestressing steel. The analysis used the Age-Adjusted Effective Modulus and 

normative relationships to obtain long-term effects. The numerical results were evaluated through a comparative 

study with long-term load-displacement curves from the literature, obtaining excellent approximations. 
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1  Introduction 

The application of prestressing in civil construction has allowed great advantages in the structural elements 

of concrete, such as: reduction of cracks, limitation of deflections and increase in the durability of concrete. The 

dimensioning of prestressed structures with unbonded tendons is carried out observing the prestressing losses over 

the service life of the structural part, which occur immediately or over time. The long-term prestressing losses can 

establish a great influence on the behavior of the structures and, consequently, command the criteria of choice in 

the structural design parameters. 

         Due to advance of prestressed concrete technologies and their propagation in large-scale works, some 

researchers have studied the behavior of prestressed concrete members with unbonded tendons, in particular beams 

. However, there are few studies focused on predicting the behavior of structures in bending under long-term 

service loads [1-3]. 

        This way, Lou et al [2] proposed a element finite formulation to analyze time-dependent unbonded prestressed 

concrete continuous beams in which it considered the shrinkage deformation independent of the applied stress, 

differently from the creep that was associated with the history of applied stresses. 

        Páez and Sensale [1], on the other hand, present an approach based on the finite element method used to 

model the time-dependent effects (shrinkage, relaxation and creep), in which it considers the time dependence on 

the constitutive relations for the concrete using the Age-Adjusted Effective Modulus Method to determine the 

stiffness matrix over time. 

        Alves [3] also proposed a simplified finite element formulation that considers the creep and shrinkage effects 

based on the Age-Adjusted Effective Modulus Method (MMEA), but with the consideration of the creep 

coefficient by standard descriptions [4]. 

       In this work, similarly as in Páez and Sensale [1] and Alves [3], the simplified model based on MMEA was 

used to formulate finite elements that considers the effects of creep and shrinkage, in addition to steel relaxation. 

The model considers materials under service loads and disregards geometric nonlinearities. The formulation 

consists of one-dimensional plane frame elements with 7 degrees of freedom based on Euller Bernoulli's theory 

and unbonded tendons element implemented in Matlab software. 
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2  Finite Element formulation 

        The finite element formulation was based Euller- Bernoulli beam theory considering hypotheses such as: The 

cross-section of a beam remains plane after deformation and the cross-section remains normal to the deformed 

axis of the beam. The displacements field are defined: 

 
 

                                                            𝑢(𝑋, 𝑌) =  𝑢𝑜(𝑋) − 𝑌. 𝑣𝑜
′(𝑋)                                                            (1) 

 

                                                                    𝑣(𝑋, 𝑌) =  𝑣𝑜(𝑋)                                                                       (2) 

 

where u e v are the axial and transverse displacements and the subscript O refers to displacements at the beam 

reference axis. 

2.1 Frame element 

        The finite element of a plane frame with 7 degrees of freedom is shown in Figure 1 with the coordinate 

system, such element is proposed based on the Total Lagrangian approach. The Green-Lagrange strain is used to 

determine the longitudinal strain of the element 𝜀𝑥, expressed as a function of the membrane strain  𝜀𝑜 and 

curvature k as: 

                                                            𝜀𝑥 = 𝑢𝑜
′ +

1

2
 𝑣𝑜′

 2 
− 𝑌. 𝑣𝑜

′′ = 𝜀𝑜 − 𝑌. 𝑘                                                     (3) 

 

The membrane strain and curvature can be interpreted as generalized strain 𝛆 . In vector form : 

                                                                                     𝜺 =  [
εo

 κ
]                                                                             (4) 

        The element proposed presents internal degree of freedom not associated with the mesh nodes of the plane 

frame member, but the axial displacements 𝑢0(𝑥) inside the element are determined by quadratic Lagrange 

interpolation functions with three degrees of freedom, while the transverse displacements 𝑣0(𝑥) are represent by 

Hermite interpolation polynomials. The use of the internal node for the axial displacement avoids a membrane 

locking problem in the order of the degrees of the polynomials 

 

 

Figure 1. Plane frame element with 7 degree of freedom with the coordinate system 

        The generalized strain vector 𝛆 is represented as a function of the nodal displacements vector ue and the strain-

displacement matrix B. 

𝜺 = 𝑩. 𝒖𝒆                                                                              (5) 

2.2 Shrinkage and creep 

         Shrinkage and creep are considered using the Age-Adjusted Effective Modulus Method (AAEM) in the 

formulation for long-term service loads less than 50% of the strength of the concrete beam. The strain in concrete 

over time ε(t) that employs the effects of creep and shrinkage by the adjusted modulus of elasticity is defined by 

[5]: 

   𝜀(𝑡) = 𝜎𝑐(𝑡𝑜) 
1 + ∅(𝑡, 𝑡0)

𝐸𝑐(𝑡0)
+

    ∆𝜎𝑐     

𝐸𝑐(𝑡0)
[1 + 𝜒(𝑡, 𝑡0)∅(𝑡, 𝑡0)] + 𝜀𝑠ℎ(𝑡)              (6) 
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where 𝐸𝑐(𝑡0) is the longitudinal modulus of elasticity at the date of application of the external load, 𝜒(𝑡, 𝑡0)  is the 

age coefficient of the concrete, ∅(𝑡, 𝑡0) is the creep coefficient and 𝜀𝑠ℎ(𝑡) is the shrinkage strain. The expression 

of Eq. 6 can be rewritten using the formulation of the adjusted effective modulus of elasticity  𝐸(𝑡, 𝑡0), thus: 

 

                                                       𝜀(𝑡) = 𝜎𝑐(𝑡𝑜) 
1 + ∅(𝑡, 𝑡0)

𝐸𝑐(𝑡0)
+

    ∆𝜎𝑐     

𝐸(𝑡, 𝑡0)
+ 𝜀𝑠ℎ(𝑡)                                                 (7) 

 

        The internal virtual work can be evaluated in the analysis of concrete strain as a function of time for long-

term loads and is expressed as a function of the generalized strain vector 𝜺(𝑡) and the generalized stresses vector 

σ(t) : 

 𝛿𝑈𝑒(𝑡) =  ∫ 𝛿𝜺(𝑡). 𝝈(𝑡). 𝑑𝑉
𝑉

  (8) 

where the generalized stresses vector 𝝈(𝑡) is composed of normal force N(t) and bending moment M(t) as a 

function of time.     

         The strain increment vector as a function of time is defined using the strain-displacement matrix, obtaining:         

                                                                 𝛿𝜺(t) =  𝑩. 𝛿𝒖𝒆(𝑡)                                                                          (9) 

         Developing the generalized stresses vector  by the constitutive relations and the use of the Adjusted effective 

module, obtaining the expression of the internal virtual work [3]:          

                     𝛿𝑈𝑒(𝑡) = 𝜹𝒖𝒆(𝑡)
𝑻 ∫ 𝑩𝑻 [ 𝑪(𝑡, 𝑡𝑜). 𝑩. 𝒖𝒆(𝑡) − 𝑪𝒔𝒉. 𝜺𝒔𝒉(𝑡) + 𝝈𝟎(𝒕𝟎). ∅(𝑡, 𝑡𝑜)]. 𝑑𝑋

𝑳𝒆
                     (10) 

where, 𝑪(𝑡, 𝑡𝑜) is the time-dependent constitutive matrix,  Csh is the constitutive vector for the shrinkage strain, 

𝝈𝟎 is the generalized stresses vector at loading time t0 e ∅(𝑡, 𝑡𝑜) is an expression as a function of the aging 

coefficient and creep coefficient: 

                                       𝑪(𝑡, 𝑡𝑜) =  [
𝐸(𝑡, 𝑡0)𝐴𝑐 −𝐸(𝑡, 𝑡0)𝑆𝑐

−𝐸(𝑡, 𝑡0)𝑆𝑐 𝐸(𝑡, 𝑡0)𝐼𝑐
] + [

𝐸𝑠. 𝐴𝑠 −𝐸𝑠. 𝑆𝑠

−𝐸𝑠 . 𝑆𝑠 𝐸𝑠 . 𝐼𝑠
]                                         (11) 

                                                                    𝑪𝒔𝒉 = [
E(t, t0)Ac

E(t, t0)Sc

]                                                              (12)     

 

                                                                    𝝈𝟎(𝑡0) =  [
Nc(t0)

Mc(t0)
]                                                                               (13) 

  

           ∅ =  
∅(t, t0). [χ(t, t0) − 1]

1 + χ(t, t0)∅(t, t0)
                                                            (14) 

 

the components Ac, As, Ic, Is , Sc e Ss are refer to the areas, moments of inertia and moment of area of concrete 

section and the steel bars of section, respectively. On the other hand, Nc(t0) and Mc(t0) refer to the normal force 

and bending moment in the concrete at the loading time (t0). 
The internal virtual work can be considered, as: 

𝛿𝑈𝑒 = ∫ 𝛿𝜺𝑇 𝝈 𝑑𝑋
𝐿

= 𝛿𝒖𝒆
𝑇𝐠𝒆                                                                 (15) 

 

Therefore, replacing the Eq.10 an Eq.15, it is possible to write the element internal force vector 𝐠𝒆(𝑡): 

 

𝒈𝒆(𝑡) = ∫ 𝑩𝑻𝑪(𝑡, 𝑡𝑜)𝑩. 𝒖𝒆(𝑡)𝒅𝒙
𝑳𝒆

− ∫ 𝑩𝑻𝑪𝒔𝒉𝜺𝒔𝒉(𝑡)𝒅𝒙 +
𝑳𝒆

∫ 𝑩𝑻𝝈𝟎(𝑡0). ∅(𝑡, 𝑡𝑜)𝑑𝑥
𝑳𝒆

            (16) 

 

The components of Eq. 16 can be rewrite as: 

 

𝒈𝒆(𝑡) = 𝑲𝒆(𝑡, 𝑡𝑜). 𝒖𝒆(𝑡) − 𝒇𝒔𝒉𝒆(𝑡, 𝑡𝑜) + 𝒇𝒄𝒓𝒆(𝑡, 𝑡𝑜)                                    (17) 

 

where 𝑲𝒆(𝑡, 𝑡𝑜) is the element stiffness matrix, 𝒇𝒔𝒉𝒆(𝑡, 𝑡𝑜) is the element shrinkage force vector and 𝒇𝒄𝒓𝒆(𝑡, 𝑡𝑜) is 

the element creep force vector: 

𝑲𝐞(𝑡, 𝑡𝑜) = ∫ 𝑩𝑻𝑪(𝑡, 𝑡𝑜). 𝑩. 𝑑𝑥
Le

                                                    (18) 
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                                                             𝒇𝒔𝒉𝒆(𝑡, 𝑡𝑜) =  ∫ 𝑩𝑻𝑪𝒔𝒉. 𝜀𝑠ℎ(𝑡)𝑑𝑥
𝐿𝑒

                                                    (19) 

 

                                                          𝒇𝒄𝒓𝒆(𝑡, 𝑡𝑜) =  ∅(𝑡, 𝑡𝑜) ∫ 𝑩𝑻𝝈𝟎(𝑡0)𝑑𝑥
𝐿𝑒

                                                  (20) 

 

After the assembly of the global stiffness matrix of the structure (K) and the global external force vectors due to 

creep and shrinkage fc and fsh  respectively, the equilibrium of the internal force vector 𝒈(𝑡) with the external force 

vector global 𝒇(𝑡)  is performed  by the expression: 

 

𝑲(𝑡, 𝑡𝑜). 𝒖(𝑡) = 𝒇(𝑡) + 𝒇𝒔𝒉(𝑡, 𝑡𝑜) − 𝒇𝒄𝒓(𝑡, 𝑡𝑜)                                                    (21) 

2.3 Unbonded tendon element 

Moreira et al [6], describe that in unbonded prestressed concrete beams, there is no strain compatibility 

between the concrete and the tendon at a given cross-section. Therefore, they consider that there is only 

compatibility at the ends of the beam or at anchorage points. This way, the tendon strain depends on the 

displacements of the tendon as a whole. 

        The model proposed is based on the consideration of the tendon as a finite element discretized into straight 

segments that contribute to the internal force vector and to the stiffness matrix of the structure. It is easy evaluate 

that due to the lack of bond between the plastic sheath and the prestressing steel, it can be considered that the stress 

and strain in the tendon is constant along the cable length [3-6].  

The displacements of the straight tendon segment are obtained from the displacement of the embedding frame 

element through classical beam theory, see Figure 2, express by [6 -7]:  

 

                                   𝑢𝑝1(𝑋𝑝1, 𝑌𝑝1) =  𝑢1(𝑋1) − 𝑌. 𝑣1
′(𝑋1) = 𝑢1(𝑋1) − 𝑌. 𝜃1(𝑋1)                                       (22) 

 

                                                                   𝑣𝑝1(𝑋1, 𝑌1) =  𝑣1(𝑋1)                                                                (23) 

 

                                    𝑢𝑝2(𝑋𝑝2, 𝑌𝑝2) =  𝑢2(𝑋2) − 𝑌. 𝑣2
′(𝑋2) = 𝑢2(𝑋2) − 𝑌. 𝜃2(𝑋2)                                (24) 

 

                                                                   𝑣𝑝2(𝑋2, 𝑌2) =  𝑣2(𝑋2)                                                                (25) 

 

where up1  and  up2 are axial displacements e vp1  e  vp2 are transverse displacements of the straight segments nodes. 

        In Matrix form: 

 

                                               𝒖𝒑𝒆 = [

𝑢𝑝1

𝑣𝑝1

𝑢𝑝2

𝑣𝑝2

] =   [

1 0 −𝑌𝑝1 0 0 0

0 1 0 0 0 0
0 0 0 1 0 −𝑌𝑝2

0 0 0 0 1 0

]

[
 
 
 
 
 
𝑢1

𝑣1

𝜃1

𝑢2

𝑣2

𝜃2]
 
 
 
 
 

= 𝑻𝒆𝒖𝒆                                        (26) 

 

where upe is the nodal displacements vector of the tendon segment, ue is the nodal displacements vector of the 

frame element and Te  the transformation matrix. 

  

Figure 2. Association of coordinates of plane frame element and tendon element  
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The internal virtual work of the prestressing tendon element associated with its constant strain and stress, 

Eq.(15), is given by: 

 

                                                𝛿𝑈 = ∫ ∫ 𝛿𝜀𝑝𝜎𝑝 𝑑𝐴𝑑𝑥
𝐴𝑝𝐿𝑝

= 𝛿𝜀𝑝. 𝜎𝑝. 𝐴𝑝. 𝐿𝑝                                                      (27) 

 

The strain variation (𝛿𝜀𝑝) can be written: 

 

                                                                          𝛿𝜀𝑝 = 
𝛿𝑙𝑝

𝐿𝑝

                                                                            (28) 

where 𝛿𝑙𝑝 can be obtained from: 

  

                                       𝛿𝑙𝑝 = ∑ 𝛿𝑙𝑝𝑒 = ∑ 𝒓𝒆
𝑇𝛿𝒖𝒑𝒆 =  ∑ 𝒓𝒆

𝑻𝑻𝒆𝜹𝒖𝒆 
𝑛𝑝
𝑒=1   

𝒏𝒑
𝒆=𝟏  

𝒏𝒑
𝒆=𝟏                                                (29) 

 

 𝒓𝒆 represents the vector that is related to the slope (β) of the cable segments with the horizontal axis in the 

deformed configuration. 

                                                                               𝒓𝒆 = [

−𝑐𝑜𝑠𝛽
−𝑠𝑒𝑛𝛽
𝑐𝑜𝑠𝛽
𝑠𝑒𝑛𝛽

]                                                                          (30)   

2.4 Relaxation of prestressed steel 

         The analysis of the unbonded tendon element under long term loads is proposed considering the behavior of 

the tendon in the linear elastic regime. Thus, the stress σ𝑝(t) is determined by [3]:  

 

                                                              𝜎𝑝(𝑡) =  𝐸𝑝. [𝜀𝑝(𝑡) − 𝜀𝑝,𝑟𝑒𝑙(𝑡, 𝑡𝑜)]                                                    (31) 

 

where, Ep is the elastic modulus of the prestressing steel, 𝜀𝑝(𝑡) is the tendon strain at the date t e 𝜀𝑝,𝑟𝑒𝑙(𝑡, 𝑡𝑜) is the 

tendon relaxation strain. 

         The measurement of the tendon relaxation strain is performed through the expression of stress as a function 

of time proposed by Magura et al [8], thus: 

 

                                                     𝜀𝑝,𝑟𝑒𝑙(𝑡, 𝑡𝑜) =  𝜀𝑝𝑜(𝑡𝑜). [
log(𝑡 − 𝑡𝑜)

10
 (

𝜎𝑝(𝑡𝑜)

𝜎𝑝𝑦
− 0,55)]                                            (32) 

          

         Replacing the tendon relaxation strain in the Eq. (31): 

                                                              𝜎𝑝(𝑡) =  𝐸𝑝. [∆𝜀𝑝(𝑡) +  𝜀𝑝𝑜(𝑡𝑜). ∅𝑝,𝑟𝑒𝑙(𝑡, 𝑡𝑜)]                                                     (33) 

where:  

                                                  ∅𝑝,𝑟𝑒𝑙(𝑡, 𝑡𝑜) = [1 −
log(𝑡 − 𝑡𝑜)

10
 (

𝜎𝑝(𝑡𝑜)

𝜎𝑝𝑦
− 0,55)]                                            (34) 

 

and ∆𝜀𝑝(𝑡) is the incremental strain and 𝜀𝑝𝑜(to) is the initial strain at the date of application of the external load 

𝑡𝑜. Using Eq. (27), (28) and (29) and replacing the stress in the tendon 𝜎𝑝 by the expression of Eq. (33), applied 

as a function of time t, it is possible write the equation in form: 

 

                            𝛿𝑈(𝑡) = ∑ 𝒓𝒆
𝑻𝑻𝒆 𝜹𝒖𝒆. 𝐴𝑝. 𝐸𝑝 . [∆𝜺𝒑(𝑡) +  𝜺𝒑𝒐(𝑡𝑜). ∅𝒑,𝒓𝒆𝒍(𝑡, 𝑡𝑜)]

𝒏𝒑
𝒆=𝟏                             (35) 

         

         The Eq. (35) can be written as:           

 

                                                 𝛿𝑈(𝑡) = 𝜹𝒖𝒆. ∑ 𝒓𝒆
𝑻𝑻𝒆. [∆𝐹𝒑(𝑡) + 𝐹𝒑𝒐(𝑡𝑜). ∅𝒑,𝒓𝒆𝒍(𝑡, 𝑡𝑜)]

𝒏𝒑
𝒆=𝟏                                 (36) 

where: 

                                                                            ∆𝐹𝑝(𝑡) = 𝐴𝑝. 𝐸𝑝. ∆𝜀𝑝(𝑡)                                                             (37) 

                                                                            𝐹𝑝𝑜(𝑡𝑜) = 𝐴𝑝. 𝐸𝑝. 𝜀𝑝𝑜(𝑡𝑜)                                                           (38) 
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         The internal force vector of the tendon segment can be evaluated as: 

 

                                                           𝐠𝒑𝒆 =  𝑻𝒆
𝑻𝒓𝒆. [∆𝐹𝑝(𝑡) +  𝐹𝑝𝑜(𝑡𝑜). ∅𝑝,𝑟𝑒𝑙(𝑡, 𝑡𝑜)]                                            (39) 

 

         Separating into two terms the Eq. (39): 

                                                                       𝐠𝒑𝒆 =  𝑻𝒆
𝑻𝒓𝒆. ∆𝐹𝑝(𝑡) + 𝒇𝒑𝒆,𝒓𝒆𝒍(𝑡, 𝑡𝑜)                                              (40) 

 

where 𝒇𝒑𝒆,𝒓𝒆𝒍 is vector of the tendon segment due steel relaxation: 

 

                                                                   𝒇𝒑𝒆,𝒓𝒆𝒍(𝑡, 𝑡𝑜) = 𝑻𝒆
𝑻𝒓𝒆. 𝐹𝑝𝑜(𝑡𝑜). ∅𝑝,𝑟𝑒𝑙(𝑡, 𝑡𝑜)                                                  (41) 

 

Adding up to the Eq. (21) the contribution of the unbonded tendon and the influence of the steel relaxation 

on the beam, the general expression for the structure is obtained by: 

 

                                  𝑲(𝑡, 𝑡𝑜). 𝒖(𝑡) = 𝒇(𝑡) + 𝒇𝒔𝒉(𝑡, 𝑡𝑜) − 𝒇𝒄𝒓(𝑡, 𝑡𝑜) +  𝒇𝒑,𝒓𝒆𝒍(𝑡, 𝑡𝑜)                                            (42) 

 

3  Numerical analysis 

         The implementation of the finite element formulation was performed using MATLAB software in order to 

simulate the behavior of the unbonded prestressed concrete beams under long term service loads . The models 

implemented in this study are continuous beams shown in Figure 3, whose parameters are defined in Table 1. The 

validation of the implemented models occurred by comparing the results obtained by Lou et al [2] through load-

displacement curves. The beams evaluated by Lou et al [2] are designated as, YLA2, YLB2, and YLC1 with 

dimensions of 15 x 30 x 1000 cm and supported by three supports. 

 

     

Figure 3. Continuos beams  

         In the implementation of the models, the service load applied to the beam of 30 kN was considered, with a 

start and end date for loading the structure from 28 to 600 days, respectively. The shrinkage strain 𝜀𝑠ℎ(𝑡) was 

determined by the model proposed by CEB-FIP [4]. The relative humidity of the air was considered to be 60%. 

Table 1. Material Parameters 

Beams As1 

(cm²) 

As2 

(cm²) 

As3 

(cm²) 

As4 

(cm²) 

fyk 

(MPa) 

fc 

(MPa) 

YLA2 4,524 2,262 2,262 2,262 361 36,7 

YLB2 6,032 5,089 2,262 6,032 361 33,0 

YLC1 7,634 7,634 2,262 7,634 361 37,1 

 

        The Figure 4a represent the results obtained for the load-displacement curves for beams YLA2, YLB2 e 

YLC1. Note that the results obtained present a very good agreement with the data developed by Lou et al [2].  

         In the Figure 4b there is the presentation of load-displacement curves for beam YLA2 with age coefficients 

(χ) ranging from 0,6 to 0,8. The curves compared with the results of Lou et al [2] indicate an influence of the age 

coefficient inversely proportional to the results of the literature presented, signaling the best responses for the age 

coefficient with a value of 0,7. 
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  (a)                                                                                    (b) 

Figure 4. Results displacement-load curves  
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4  Conclusions 

In this paper, a finite element formulation for the numerical simulation of unbonded prestressed concrete 

beam under long-term service loads was developed and implemented. The model considered materials in linear 

regime and disregarded geometric nonlinearities. A plane frame element with 7 degrees of freedom was used to 

simulate the reinforced concrete section and a finite truss element to simulate the unbonded tendon. 

        The implementation of the model used the Adjusted Effective Modulus Method  to evaluate the effects of 

creep and shrinkage where were obtained excellents results compared with literature results. The analysis also 

showed that the aging coeficiente presented best results with values about 0,7. 
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