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Abstract. Turbidity currents are the main means by which sediments are transported across the ocean
floor and one of the principal mechanisms that leads to the formation of basins hosting oil reservoirs.
Detailed modeling of this phenomenon may offer new insights to help geologists to understand the de-
position mechanisms and the final stratigraphic form of the reservoir. As turbidity currents propagate
over the seafloor, they trigger the evolution of a host of topographical features through the processes of
deposition and erosion, such as channels and sediment waves. We aim at enhancing the understanding
of the underlying physics, with particular emphasis on the sediment deposition mechanisms. Numerical
experiments in setups intended to mimic, partially, as the bed morphology is not allowed to change,
close with experimental, have adopted. We present in this work a finite element residual-based varia-
tional multiscale formulation applied to the numerical simulation of particle-laden flows. We employ an
Eulerian–Eulerian framework to describe the flows in which the mathematical model results from the
incompressible Navier–Stokes equation combined with an advection-diffusion transport equation, where
viscosity depends non-linearly from the sediment concentration. Sediment-laden turbidity currents inter-
acting with irregular bottoms are investigated. The impact of bed morphology over turbidity currents
with viscosity varying with concentration is investigated through quantities of interest such as bottom
shear stresses and deposition. The spatial pattern of the deposition and its correlation with flow struc-
tures are the main focus of this analysis. Quantitative and qualitative observations of the currents are
captured in the experiments, we discuss the morphodynamics of the different scenarios for different bot-
tom bathymetry. Further studies may be carried out in order to constructing new concepts of bedforms
generation by density currents.
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1 Introduction

Gravity currents consist of flows generated from small differences in the local fluid density, often
also called density currents, see [1]. The density difference promotes a pressure gradient that drives the
flow, for example, this might result from local changes in salinity or temperature. Moreover, it can also
be due to the presence of sediment particles in suspension, what motivates the resulting currents to be
known as particle-laden or particle-driven flows. Indeed, gravity currents are present in many different
contexts and occur naturally as well as caused by human actions, see [2]. Natural examples are avalanches,
deep water turbidity currents and volcanic eruptions. On the other hand, industrial accidents can cause
dispersion of heavy gases in the atmosphere that propagates through a forehead. A comprehensive list
of examples may be found in [1], [3] and [2]. The particles can be carried out for long distances and,
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eventually, they will settle, being responsible for sediment deposits generating geological formations of
considerable interest for the oil and gas industry. Sedimentation and erosion promoted by particle-laden
flows can mold the seabed producing different geological structures such as canyons, dunes, and ripples.
Particle-laden flows, many times referred to turbidity currents within the geological community, are the
main focus here. They typically develop strong turbulence, which impacts directly the particles ability to
move relative to the carrying fluid, to settle or to be re-entrained. Data recorded for turbidity currents
in the ocean suggests Reynolds numbers of the order of 109 [2]. Depending on what prevails, settling
or resuspension, the current, and its turbulent structures might evolve in an entirely different manner,
and consequently, those flow changes affect the transport of particles. The spread of a gravity current
depends on the boundary conditions, and two cases are usually distinguished based on whether the initial
release is of the same width as the environment or not.

In this sense two numerical setups, contemplating these conditions will be studied, inspired in so-
phisticated laboratory tests, are used for the analysis. A channel or corridor flow with a sustained current
is adopted with two bottom configurations. Our findings suggest how turbulent structures and sediment
deposition are affected by a particular empirical rheological law interacting with sea floor. The remain-
der of this paper is organized as follows. In Section 2 we introduce the governing and closure equations.
Section 3 presents the computational implementation of the finite element formulation and turbulence
modeling adopted. and in Section 4 we show the computational results. The paper ends with a summary
of our most important findings.

2 Physical Modeling: phenomenological equations

In this section we present, under an Eulerian-Eulerian framework, the governing equations for tur-
bidity currents developed combining mass and momentum balances with rheological phenomenological
models. Through these currents, a mixture of sediments, encompassing different particle sizes, can be
carried and eventually deposited on the sea bottom. Sediments are modeled as a continuum and described
by the volumetric concentration. As there are no sharp limits of the volumetric sediment concentration
defining dilute and nondilute flows, we invoke here the Boussinesq’s hypothesis, typically used for the
dilute case, but assuming rheological relations that accommodate higher sediment concentrations. As-
suming Boussinesq’s hypothesis, we intend to propose an extension of the model presented in [] capable
of describing nondilute currents. The determination of its domain of validity is outside the scope of the
present work, and here we aim at enhancing the understanding of the underlying physics, with particular
emphasis on the sediment deposition mechanisms.

2.1 Incompressible flow coupled with particles transport

The spatial domain in which the flow takes place along the time interval [0, tf ] is denoted by
Ω ⊂ Rndim , where ndim is the number of spatial dimensions, and Γ the boundary of Ω. A velocity-pressure
non-conservative form of the Navier-Stokes (NS) equations describes the incompressible turbulent fluid
flows carrying suspensions of sediments. We assume that for the scenarios analyzed, particles inertia
and particle-particle interactions can be considered negligible. Moreover, we also apply the Boussinesq
hypothesis which accounts for the fluid - particle interaction using a forcing term proportional to the
local difference in the fluid density due to the presence of sediments. Fluid motion drives the sediment
particles, but they are also endowed with extra mobility modeled by their settling velocity uS , related
to grain size sediment in the gravity direction, eg, uncoupled advection-diffusion equations model the
sediment transport. The motion of each grain size, embedded in the mixture, is mapped to the fields
c = C/C0 the scaled concentrations, expressing the volume fraction occupied by each particle size. C and
C0 are, respectively, the actual concentration and the initial reference concentration or normalization
value, see [4], the latter typically taken as the total initial volume fraction of the particles. Diffusion
of the sediment is supposed to be quite small. Motivation by its inclusion in the modeling is often by
numerical reasons [5]. Accordingly, the dimensionless equations that govern the particle-laden flow are:
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Fluid: Incompressible Navier Stokes

∂u
∂t + u .∇u = −∇p + 2

νf

√
Gr

∇.(νm(c)∇su) + c eg in Ω × [0, tf ] (1)

∇ . u = 0 in Ω × [0, tf ] (2)

Sediment Transport: Advection + Diffusion

∂c

∂t
+ (u + uSeg).∇c = ∇.

(
1

Sc
√

Gr
∇c

)
in Ω × [0, tf ] (3)

where u, p and t are, respectively, non-dimensional velocity, pressure and time. Above, p, many times
referred in the literature as the dynamic pressure, results after removing the hydrostatic component of
the pressure. The rheological function νm(c) of the volumetric concentration, is the effective dynamic
viscosity and uS the particle settling velocity acting in the direction of gravity eg. Gr is the Grashoff
number that expresses the ratio between buoyancy and viscous effects given by:

Gr =
(

ubHρf

νf

)2
(4)

with νf and ρf are, respectively, dynamic viscosity and the fluid density, H is a characteristic length of
the flow and the buoyancy velocity;

ub =
√

gHc0(ρ̃p − ρ̃f )/ρ̃f

where g stands for the gravity acceleration and ρ̃p and ρ̃f for, respectively, particles and fluid densities.
The Reynolds number is such that Re = Gr2. We assume that the different grains have the same density.
A third dimensionless number, resulting from turning the governing equations into a non-dimensional
form is the Schmidt number, Sc, giving the ratio between diffusion and viscous effects:

Sc = νf

κρf
(5)

where κ is the diffusion coefficient, supposed to be very small.
Essential and natural boundary conditions for Equation (1) are u = g on Γg and n·

(
−p Id + νm

νf

√
Gr

∇u
)

=
h on Γh, where Γg and Γh are complementary subsets of the domain boundary Γ. Functions g and h
are given, and n is the unit outward normal vector of Γ. A divergence-free velocity field u0(x) is the
initial condition for the velocity and ci(x, 0) describing grain size composition and concentration of the
suspended sediment in the begining of the current have to be prescribed for the transport equation. For
equation (3), boundary conditions modeling the transport of particles into and out the flow domain are:

c = cn on Γci
n

uSeg c −
(

1
Sc

√
Gr

)
∇c) · n = 0 on Γc

h

∂c

∂t
− uS∇c · n = 0 on Γbottom

with Γ = Γc
n ∪ Γc

h ∪ Γbottom and Γc
n ∩ Γc

h ∩ Γbottom = ∅.
The former, a Dirichlet condition, describes the quantity of sediment entering in the flow domain.

The second and third boundary conditions are enforced to reproduce physical mechanisms of particle
motion through the remaining boundary, either by diffusion or advection. Sedimentation is allowed at
the bottom on Γbottom. This last condition implies in loss of sediment but does not take into account
any modification of the bottom geometry by deposition. Moreover, no particle resuspension mechanism,
allowing particles to go back to the flow after hitting bottom, like erosion, is included. No significant
amount of resuspension is expected for the flow conditions analyzed here, [6]. Therefore, at the bottom,
the boundary condition is nothing but the net flux of sediment mass deposited by the current. Moreover,
for each spatial point x on Γbottom, the contribution to the layer thickness resulting from the deposition
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is given by integrating the particles fluxes till the time t resulting in surfaces defined over the bottom as:

D(x, t) =
∫ t

0
uS c(x, t) dτ (6)

The resulting deposit thickness is obtained at each time t, the total height corresponding to the deposition
on a specific point at the bottom is DT . The final spatial maps computed at the end of the current
(t = t∞), D(x, ∞), are considered in the present study of high interested, inasmuch they characterize the
deposition patterns which can be used to infer a geological model of the basin, [7]. Those maps contain
both thickness and composition of the deposits. At this point, it is important to recognize that the
genesis of the final geologic formation occurs along a substantial period resulting from different events.
In this sense, the above model is supposed to reproduce a single event. However, to obtain the final form,
we have to consider a sequence of simulations in which each event deposits, and might erode, stacking
sediment mass over the previous ones.

2.2 Phenomenological modeling: closure equations

The interdependence of the motion of the two components of the mixture, fluid, and sediments, is
expressed in the above balance equations through a buoyancy term. The buoyancy term is proportional
to several factors. The total sediment concentration at each spatial point acting on the fluid, the depo-
sition mechanism embedded in the bottom boundary condition, the convective velocity in the transport
equation, and, the particular focus here, a phenomenological relation to describe the effect of the sediment
concentration on the viscosity. The modeling of this modified rheological behavior introduces a closure
equation to the mathematical problem. Here we adopt, despite the variety of possibilities found in the
literature [8], the model of [9],

νm(c) = ν0

(
1 − c

cm

)−2.5cm

(7)

where cm is the maximum volumetric concentration. This particular model has been used in [10] to help
in the understanding of turbulence modulation in nondilute sediment transport. The above nonlinear
phenomenological model is supposed to reproduce the rheological response of the mixture with a limited
degree of accuracy, employed to pursue a compromise between computational costs and fidelity to reality.
More sophisticated models, like those based on the two-fluid approach [10], are supposed to be more

Figure 1. Nonlinear Krieger & Dougherty viscosity law from [8]

accurate, but the simulations would, typically, lead to more intense computations as well. Therefore, it
is crucial to estimate the impact of potential pitfalls of those models in the final predictions. As example
[11] presents an analysis of how the dynamics of turbidity currents react to empirical relations describing
mass exchange with the surroundings and [12] carries out a validation of turbulent closure models for
particle-laden flows. Figure 1 unveils that the phenomenological model built upon those tests display
same trends of growth but also bear substantial differences regarding the viscosity values predicted for a
given concentration, especially for medium and high concentrations. We propose here trying to improve
our RB-VMS formulation with closure models to be embedded with the aim to analyze the impact
on the results and reproduce the physics observed for sediment-water mixtures in standard rheological
experiments [13].
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3 Finite element formulation and turbulence subgrid modeling

The solver for the sediment transport coupled problem employed here relies on a weak formulation
based on the Residual Based Variational Multiscale Method (RBVMS) introduced within the context of
Finite Element Stabilized Methods. RBVMS have been used with success in the simulation of turbulent
flows [14] , [15], [16], [17], [18], [19] and [20], free-surface flows [21] and multi-transport [22] and [23], two
fundamental aspects of the present problem. Indeed, the finite element formulation employed here is a
direct extension of the one proposed in [20] for polydisperse currents. The interested reader will find all
details about the formulation, with a particular focus on the role of the subgrid modeling in the turbulent
transport of the sediments in [20]. The governing equations approximated by RBVMS relies on a scales
splitting of the physical variables combined with variational projections [20]. This splitting involving
the large scales (those explicitly captured by the numerical grid) and the fine scales (subgrid scales).
This splitting of scales is to be inserted in a standard weak formulation built upon Equations (1) to (3).
Assuming as in [20] a simple algebraic model for the fine scales. Substituting the above expressions in the
weak formulation for the coarse scales, we arrive at the final finite element formulation. It can be shown
that RBVMS stabilizes the numerical solution for convection-dominated flows and also allows equal-order
interpolation for velocity and pressure. Furthermore, the final formulation is now understood ([24], [25])
to lead to a Large Eddy Simulation (LES) framework, in which the fine scales model provides a subgrid
model for turbulence. The turbulence structures within the turbidity currents, as the computational
simulations to be presented later in this paper, involving recirculation and separation of the flow have a
great impact on the final depositional pattern. In this respect, assuming that V denotes the trial function
space for the velocity-pressure-concentration triple {u, p, c} and W the space of test functions for the
momentum, continuity and sediment transport equations, denoted by {w, q, υ}, the weak form consist in
find {u, p, c} ∈ V such that ∀{w, q, υ} ∈ W,

3.1 Computational Implementation and Solution Procedure

The RBVMS formulation presented in this work is implemented in the EdgeCFD software, which
is an incompressible flow solver able to treat free-surface flow problems by a Volume-of-Fluid approach
[21]. EdgeCFD is a parallel Fortran90 finite element code consisting of an outer time integration loop of
two staggered-coupled systems of equations. Most of the computational cost comes from the u-p coupled
solution of the incompressible flow equations while the cheapest part is due to the transport equation.

Pseudocode for coupled Navier–Stokes and Transport equations in EdgeCFD

1: while to < tf do
2: while i < imax do
3: Solve Navier-Stokes equations
4: Nonlinear method: Inexact-Newton Krylov
5: Linear method: Preconditioned GMRES(m)
6: end while
7: while i < imax do
8: Solve Transport equations
9: Nonlinear method: Predictor-Multicorrector

10: Linear method: Preconditioned GMRES(m)
11: end while
12: if PID controller activated then
13: compute time step ∆t
14: end if
15: t = t + ∆t
16: end while

EdgeCFD also supports the SUPG/PSPG formulation plus LSIC stabilization for the incompressible
Navier-Stokes equations and the SUPG formulation with discontinuity–capturing for scalar transport
[26] and [27]. EdgeCFD uses to treat turbulence by a Smagorinsky model [26]. This code uses a time
integration predictor-multi-corrector algorithm with adaptive time stepping by a Proportional-Integral-
Derivative (PID) controller (further details available in [28]).

Within the flow solution loop, the multi-correction steps correspond to the Inexact-Newton Krylov
method with backtracking as described in [29]. In this approach, the nonlinear solver adapts the tolerance
according to the evolution of the solution residuum. EdgeCFD iterative driver is the Generalized Minimal
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Residual Method (GMRES) since the equation systems stemming from the incompressible flow and
transport are non-symmetric.A nodal block diagonal preconditioner is employed for the flow and a simple
diagonal preconditioner for the transport equations. Most of the computational effort spent in the
solution phase is devoted to matrix-vector products. To compute such operations more efficiently, we
use an edge-based data structure as detailed in [29]. The computations are performed in parallel using a
distributed memory paradigm through the message passing interface library (MPI), using point-to-point
communication [30]. The parallel partitions are generated by the Metis library [31] while the information
regarding the edges of the computational grid is obtained from the EdgePack library as described in
[32]. EdgePack also reorders nodes, edges, and elements to improve data locality, exploiting the memory
hierarchy of current processors efficiently. Integrals in EdgeCFD are computed using closed–form relations
derived in volume coordinates or using a one-point (centroid) integration rule. Thus, all coefficients in
the element matrices and residue are explicitly coded. Therefore, if we evaluate u = uh + u′ and the
stabilization parameters τM , τC and τt using values of the previous multi–correction, in a linearization
scheme similar to the iteration-update of Tezduyar and Osawa [33] and Tezduyar [34], the RBVMS
implementation in EdgeCFD for simulating particle-laden flows becomes straightforward. Moreover, in
doing this, the only code modification required is computing τM and τt at the tetrahedra integration
points. This evaluation is indeed straightforward for linear tetrahedra, requiring a few extra floating
point operations and no additional memory but a few temporary variables. EdgeCFD is also able to solve
fluid-structure interaction (FSI) problems within the Arbitrary Lagrangian Eulerian (ALE) formulation,
which is useful to describe bed morphodynamics [35].

4 Computational Results

In this section, we showed the assessment of the RBVMS formulation as the capacity of the phe-
nomenological viscosity law to enhance the predictions of the turbidity currents, to do this we break
down the analysis into two examples. We analyse density currents over the flat and wavy bottom covered
with 3D elements. Both cases take into consideration physical scenarios inspired in typical experimen-
tal setups. The computational procedure to modeling the sedimentation processes was explained in the
previous section, carried through and simulated numerically with EdgeCFD. We will investigate the role
played by phenomenological laws and bottom topography, both by changing the flow dynamics and by
the effects on sediment deposition. The example to be analyzed deals with a channel configuration where
a sediment stream is sustainedly injected by a window. This problem was studied from laboratory ex-
periments and numerical simulations, [36] [37]. The difference between the densities of the heavy and the
light fluid is set to less than 3% to match with the Boussinesq hypothesis. The initial condition, there
is a domain filled with ambient fluid and a sediment fluid to be injected by a window with normalized
concentration equal to 1.

4.1 Channel setups with flat and wavy floor

The computational setup, sketched in Figure ??, shown the initial configuration, t = 0 where the
mixture of sediments and is initially in the lock area and the concentration of sediments and deposition
for at t = 20 after mixing with the clear ambient water in the channel. The channel dimensions’ are
Lx = 12, Ly = 4, Lz = 2, where the volume is fulfilled with ambient fluid (lighter) and the sediments
(heavier fluid) injected through a inlet window with h = 0.25 height, .No-slip boundary condition was
applied at the bottom and wall faces of the thank, in the top face, we specify an open flux boundary
condition. The simulation last 20 non-dimensional time units and we consider for Reynolds number,
Re = 5, 000. The domains was discretized by 1.5M tetrahedra with .7M nodes. Those values, combined
with the settling velocities and initial concentrations defined previously, lead to high Grashoff numbers
which meets laboratory standards, but it does not correspond to typically values of turbidity currents in
nature. The mixture is injected with a concentration reference C0 = 0.01.

The Grashoff number reached allows us to see the formation of turbulent structures that interact with
the sediments and are responsible for the deposition patterns showed in Figure ??.This figure illustrates
the bottom complex pattern driven by the turbulent flow pattern resulting of total deposition. Figure
?? shows font views of the concentration at x = 5 and x = 10 at the end of the discharge (t = 30).
On the left the results for the Re = 5k and on the right for Re = 10k. The concentration variations
compare the solutions with constant viscosity with the ones where the viscosity is given by the Krieger
and Dougherty nonlinear law. It is evident the effect of the nonlinear viscosity over the dynamics of the
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Figure 2. Channel setups with flat and wavy bottom

current, particularly near the bottom of the channel.

Figure 3. Flat bottom, from up to down, deposition, erosion of sediments, excess of shear stress and iso-
contours of Q-criterium colored by vorticity for constant viscosity (left) and Krieger Dougherty viscocity
law (right) at t= 12
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Figure 3 portrays a top view of the deposition, erosion, excess shear stresses and iso-contours of Q-
criterium colored by vorticity for standard simulation with constant viscosity and considering the Krieger
Dougherty viscosity law for the setup with flat bottom. It is important to note, that although (flow
and sediment transport) is in a particular snapshot is enough to see the complex spatial characteristics.
Over the time period simulated, the flow is highly three dimensional with lobe and cleft instabilities,
behavior more accentuated in the case of constant viscosity. The excess shear stresses and observe the
higher values, mainly where the current is driven by the inlet (sustained current). Note also the region
away from the inlet, where turbulence can be more relevant for the resuspension mechanism. We can
notice remarkable differences between both solutions again. These results make clear the importance of
phenomenological model on the dynamics of the turbidity currents.

Figure 4. Wavy bottom, from up to down, deposition, erosion of sediments, excess of shear stress and iso-
contours of Q-criterium colored by vorticity for constant viscosity (left) and Krieger Dougherty viscocity
law (right) at t= 12

Figure 4 shows the particle-laden gravity currents over wavy bottom floor where effect of the height
of the waves on the flow physics is analysed. Like a previous figure, same quantities re presented. The
presence of waves at the bottom increases substantially to turbulence in the evolution of the current, this is
evident trough the results of the Q-criterium. The increment of viscosity by the concentration-dependent
viscosity, given by Krieger and Dougherty law reduce this turbulence like observed in flats results and
increment the deposition at the bottom of the wells. We can notice again, remarkable differences between
both solutions that makes clear the importance of those phenomenological models on the dynamics of
the turbidity currents. a typical solution, that is, on top, the sediment concentration and below, the
correspondent sediment deposit. Note the complex deposit pattern driven by the turbulent flow. The
wavy bottom revealing complex interactions of the turbidity current with the irregular topography.
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4.2 Conclusions and Future Work

Here, a numerical formulation for simulating particle-laden gravity currents is presented using the
framework of RBVMS, in which the coupling between the fine-scale velocity and the residual of density
concentration equation is represented. The simulation of sustained particle-laden gravity currents in a
channel over flat an wavy bottom floor is presented considering viscosity dependant concentration in
the formulation. The analyses are performed over a flat and wavy bottom and compared the results
considering the effects of viscosity. It was found the flow behavior is noticeably changed, as the wave
height bottom. The the current front speed affect the particle settling by the presence of bottom and by
the viscosity too. The simulations over flat and wavy bottoms are performed and compared the results
considering the Krieger Dougherty viscosity. It was found the flow behavior is noticeably changed, as
the wave height increases. The wave height bottom decrease the current front speed and slow down the
particle settling but in the other hand the viscosity augmented te erosion.

This work shown that this kind of analyses are useful to enhance the understanding, qualitatively
and quantitatively of sedimentary depositional systems resulting from turbidity currents takeing into
consideration the physics of the flow, sediment transport, and deposition mechanisms interacting with
irregulars bottoms.
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