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Abstract. Structural engineering is an opportune field for numerical optimization as it pursuits economical designs 

that comply with safety and usability requirements. The search for the dimensions of the cross-sections of beams 

and columns is a major step on the design of reinforced concrete frames, which will implicate greatly on the 

stiffness of the structure and its displacements. Then, with the objective of enhancing the structural design process, 

this work analyzes three algorithms to optimize the problem of obtaining a minimum concrete volume while 

complying with the stability criteria of small displacements, imposed by the Gamma-Z parameter. The algorithms 

for the interior point method, active set and sequential quadratic programming are briefly discussed and their 

implementations in the pre-sizing of concrete buildings are compared in terms of efficiency and quality of the 

solution by several numerical simulations. 
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1  Introduction 

Solving an optimization problem is trying to find the best viable solution for a given system through 

mathematical procedures, which use numerical algorithms. In general, the algorithm choice is a key feature in the 

optimization process, in order that an inadequate choice can seriously increase time and computational effort to 

get a final solution. 

In recent years, a large quantity of black box optimization programs emerged, containing different 

subroutines of optimization. In view of this situation, it is necessary that researchers, during formulation of their 

problems, explore the performance of these subroutines as to avoid future problems for inadequate application. 

On these grounds, this paper engages in a performance analysis of three deterministic algorithms (Active-

Set, Interior Point and SQP) found in a black box optimizer, when used to solve a structural pre-sizing problem. 

The features analyzed are efficiency and reliability of solutions, characteristics used in other similar works like 

Beiranvand et al [1], Agnarsson et al [2] and Liu et al [3], to compare algorithms. 

2  Optimization Algorithms 

According to Arora [4], a constrained nonlinear optimization problem can be defined like: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙)  

subject to: 

ℎ𝑖(𝒙) = 0, 𝑖 = 1,2,3, … , 𝑧 
𝑔𝑛(𝒙) ≤ 0, 𝑛 = 1,2,3, … , 𝑜 

(1) 

where x is the vector of design variables, 𝑓(𝒙)is the objective function, ℎ𝑖(𝒙)gathers the equality constraints, 

𝑔𝑛(𝒙) the inequality constraints, which include the upper and lower bounds for the design variables. 

In order to solve Eq. (1), the three methods utilized distinguish in relation to how they handle the objective 
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function and constraints. The main differences between the three algorithms, Active-Set, Sequential Quadratic 

Programming (SQP) and Interior Point, are presented below. 

2.1 ACTIVE-SET  

According to Nocedal and Wright [5], Active-Set methods are a class of algorithms used since the decade of 

1970, which are quite effective for medium scale optimization problems. The recent version of this algorithm is 

developed based on Gill et al [6] and Gill et al [7] works, where a quadratic subproblem (QP) is configured to 

determine the step descendent vector in each iteration. The QP subproblem is developed through an approximation 

by way of the Taylor series, where the Lagrangian function is truncated in quadratic term. This condition results 

in Eq. (2): 

𝑚𝑖𝑛 
1

2
 𝒅𝑻𝐻𝑘𝒅 + (𝛻𝑓(𝒙𝒌))

𝑇
∙ 𝒅  

subject to:  

(𝛻ℎ𝑖(𝒙𝒌))
𝑇

∙ 𝒅 + (ℎ𝑖(𝒙𝒌))
𝑇

 = 0, 𝑖 = 1,2,3, … , 𝑧 

(𝛻𝑔𝑛(𝒙𝒌))
𝑇

∙ 𝒅 + (𝑔𝑛(𝒙𝒌))
𝑇

≤ 0, 𝑛 = 1,2,3, … , 𝑜 

(2) 

where 𝐻𝑘 is the Hessian matrix of  Lagrangian updated by BFGS method, 𝛻𝑓(𝒙𝒌) the gradient of the objective 

function, 𝛻𝑔𝑛(𝒙𝒌) the gradient of the inequality constraints and 𝛻ℎ𝑖(𝒙𝒌) the gradient of the equality constraints, 

evaluated at a point 𝒙𝒌. 

In each iteration, the inactive constraints of Eq. (2) are discarded, considering that, to determine the step 

descendent vector, only equality constraints and inequality constraints equals zero are used. This way, the Karush-

Kuhn-Tucker conditions for an iteration are equal to those presented in Eq. (3), where 𝜆𝑖
𝑘 and 𝜆𝑛

𝑘  are the Lagrange 

multipliers of active and inactive constraints respectively. 

1

2
 𝐻𝑘 ∙ 𝒅 + (𝛻𝑓(𝒙𝒌))

𝑇
+ 𝜆𝑖

𝑘 ∙ (𝛻ℎ𝑖(𝒙𝒌))
𝑇

= 0 

𝜆𝑖
𝑘 ∙ [(𝛻ℎ𝑖(𝒙𝒌))

𝑇
∙ 𝒅 + (ℎ𝑖(𝒙𝒌))

𝑇
 ] = 0 

𝜆𝑖
𝑘̇ ∙ [(𝛻𝑔𝑖(𝒙𝒌))

𝑇
∙ 𝒅 + (𝑔𝑖(𝒙𝒌))

𝑇
] = 0 

𝜆𝑛
𝑘 = 0 𝑖𝑓 (𝛻𝑔𝑛(𝒙𝒌))

𝑇
∙ 𝒅 + (𝑔𝑛(𝒙𝒌))

𝑇
< 0 

(3) 

These conditions carry on the occurrence of null Lagrange multipliers, due to non active inequality 

constraints. Moreover, it is possible to compute the values of 𝜆𝑖
𝑘 and d for the current iteration. On the condition 

of all 𝜆𝑖
𝑘 being positive, then 𝒙𝒌 is a possible local minimum. Otherwise, if any constraint is violated, i.e. 𝜆𝑖

𝑘 < 0, 

this constraint will turn into an active constraint (𝐴𝑖
𝑘) used to solve the QP subproblem in the next iteration. And 

the solution vector is updated by Eq. (4): 

𝒙𝒌+𝟏 = 𝒙𝒌 + 𝛼 ∙ 𝒅  (4) 

where α is the step length, which is determined by violated constraints and assumes values on the interval 0 and 1. 

The Active-Set can be presented through next pseudocode:   

1: Start 𝒙𝟎 

2: Find the active constraints 𝐴𝑖
0 

3: For k=0,1,2,…. do 

4:   Solve KKT condition in Eq. (3) for 𝒅𝒌 and 𝜆𝑖
𝑘 

5:   if 𝒅𝒌 = 0 then 

6:   if 𝜆𝑖
𝑘 ≥ 0 then 

7:     Stop 𝒙𝒌 is the solution 

8:    else   

9:     Remove of 𝐴𝑖
𝑘the index 𝑖 due 𝜆𝑖

𝑘 < 0 

10:   end if 

11:  else 

12:   if 𝜆𝑖
𝑘 ≥ 0 then 

13:    𝒙𝒌+𝟏 = 𝒙𝒌 + 𝒅𝒌 

14:   else   

15:    Remove of 𝐴𝑖
𝑘 the index 𝑖 due 𝜆𝑖

𝑘 < 0 
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16:    𝛼 = {−
𝐴𝑖

𝑘𝒙𝒌−𝑔𝑖(𝒙𝒌)

𝐴𝑖
𝑘𝒅

}  for 𝑖 = 1,2,3, … , 𝑜 

17:    𝒙𝒌+𝟏 = 𝒙𝒌 + 𝛼 ∙ 𝒅𝒌 

18:   end if 

19:   end if 

20: end for  

2.2 SQP 

The SQP algorithm is based in Nocedal and Wright [5] and has many similarities with Active-Set, as both 

use a local QP sub-problem for determining the descent vector.  The difference between them being the way in 

which the step length is determined, which in this case is performed via analysis of a function of merit. 

The merit function 𝛹(𝑥) combines the objective function and constraints as presented in Eq. (5): 

𝛹(𝒙) = 𝑓(𝒙) + ∑

𝑧

𝑖=1

𝑟𝑖
𝑘 ∙ ℎ𝑖(𝒙) + ∑

𝑜

𝑛=1

𝑟𝑛
𝑘 ∙ 𝑚𝑎𝑥 (0, 𝑔

𝑛
(𝒙)) (5) 

where 𝑟𝑖 and 𝑟𝑗 are penalty parameters related to active set constraints and defined by: 

𝑟𝑖
𝑘+1 = {𝜆𝑖,

𝑟𝑖
𝑘 + 𝜆𝑖

2
}  𝑎𝑛𝑑 𝑟𝑛

𝑘+1 = {𝜆𝑛,
𝑟𝑛

𝑘 + 𝜆𝑛

2
}  (6) 

The value α in current iteration is determined to impose a decrease in merit function, as in Eq. (7): 

𝛹(𝒙𝒌 + 𝑎 ∙ 𝒙𝒌) ≤ 𝛹(𝒙𝒌) (7) 

Moreover, another difference between the SQP and Active-Set algorithms is that during the solution of the 

problem on SQP, all steps are taken in the feasible region, while in Active-Set this condition is relaxed. This 

decision can be beneficial, especially when the objective fucntion is undefined out of bounds. 

2.3 INTERIOR POINT 

Interior Point methods were developed in the 90's, and have a good applicability in large scale problems. The 

idea is that these methods solve the Karush-Kuhn-Tucker conditions iteratively by successive applications of 

Newton’s method, where the inequalities constraints are handled by the use of a barrier function and slack variables 

s. In the view Eq. (1) can be rewritten with in Eq. (8): 

𝑚𝑖𝑛 𝑓(𝑥) − 𝜇 ∙ (∑ 𝑙𝑛 (𝒔𝒋)

𝑜

𝑗=1

 )  

subject to: 

ℎ𝑖(𝒙) = 0,   𝑖 = 1,2,3, … , 𝑧 
𝑔𝑛(𝒙) − 𝑠𝑛 = 0, 𝑛 = 1,2,3, … , 𝑜 

𝑠𝑛 ≥ 0, 𝑛 = 1,2,3, … , 𝑜 𝑎𝑛𝑑 𝜇 ≥ 0  

(8) 

where μ is an imposed variable to delimit the Barrier function. As the slack variables are imposed to always be 

positive, the solution steps remain within the feasible region. Furthermore, as μ decreases to a minimum value, the 

original objective function also decreases. 

3  Optimization Problem 

The proposed optimization problem consists in minimizing the concrete volume of 45 beams and 12 columns 

of a structural building composed of 5 floors, presented in Fig. 1. In all floors, the values for the accidental (live) 

load were defined according to NBR 6120:2018 [7], being a live load of 2.50 kN/m² (standard for commercial use) 

and an additional 1.00 kN/m² for flooring and ceiling were considered. For the roof slab, those values are 

respectively 1.50 kN/m² and 0.24 kN/m². The thickness for the walls is 11 cm and its unit weight 13 kN/m³. The 

concrete weight is equal to 25 kN/m³. 

The distance between floors was adopted equal to 300cm, strength of concrete (fck) of 30 MPa and Young 

modulus equal to 30672 MPa. The wind loads, considered in two orthogonals directions between them, were 
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determined according to ABNT NBR 6123:1988 [8], considering the basic speed equivalent to 30m/s, the terrain 

rugosity of type B and category IV. The structural analysis was realized through the Direct Stiffness Method, and 

according to 𝛾𝑧 calculus suggested in NBR 6118:2014 [10]. A detailed explanation of the structural analysis is 

disponible in Santos et al [11]. 

The restrictions applied are divided in two types: those of design conceptions and those from the codes. The 

first group is composed of linear equality and inequality restrictions, related to parameters such as maximum 

acceptable dimensions and cross-section geometry for structural members, among others. The second type of 

restrictions are nonlinear inequality conditions that evaluate the strength and stability requirements in a way to 

provide a structure simultaneously slender and obedient to the regulations. 

The design variables are the dimensions of structural elements, for a total of 8 variables, being: the 

dimensions of columns from number 1 to 12, except 5 and 8; the columns dimensions by 5 and 8; horizontal beams 

dimensions (parallel to x-axis); and vertical beams dimensions (parallel to y-axis). The flowchart of Fig. 2 

illustrates the sequence of the optimization process and organization of the design constraints. 

 
Figure 1. Floor plan for the structural building (dimensions in centimeters) 



D. M. Santos, J.C. Costa, N. F. de A. Andrade 

CILAMCE-PANACM-2021 
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  

Rio de Janeiro, Brazil, November 9-12, 2021 

 
Figure 2. Flow-chart 

In Fig. 2, i is the index used to identify each structural element, 𝑏𝑖 beams width, 𝑙𝑖 is the beam internal span, ℎ𝑖 the 

beam height, 𝑙𝑥𝑖  is the column dimension parallel to x-axis, 𝑙𝑦𝑖 is the column dimension parallel to y-axis, e is the 

thickness of the slab, 𝐻𝑖  is the vertical distance between consecutive floors, 𝛾𝑢𝑠𝑒𝑟  initial global parameter of 

stability, 𝜆𝑖
0° a 𝜆𝑖

90° maximal slenderness of columns parallel in both axis, 𝑙𝑒 equivalent buckling length of column, 

𝑑𝑚𝑎𝑥  horizontal maximum displacement of building, 𝑍𝑇 total height of building, 𝐴𝐼𝑖 influence area of column, 𝑄𝑖  

load per square meter in each load, fck is the concrete’s compressive strength, n number of floors, 𝛾𝑔 combination 

factor for each load, 𝛾𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒  specific weight of concrete and 𝛾𝑐 combination factor for concrete’s strength. 

4  Results 

The performance of each algorithm was verified through three test cases, where the initial values of design 
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variables were modified. In the first case, designated Min, the adopted dimension were 19cm for columns, 12cm 

for beam width and 41.333cm for beam's height , equivalent to 1/15 of the largest effective length of beams. The 

second case named Int, the values of the design variables were those of the structural elements presented in Fig. 

1. The last case, entitled Max, used in the initial step columns with both dimensions of 195cm, which was 

purposefully chosen because as it is far from the expected optimal value, beam widths of 20cm and heights of 

80cm. The Tables 1, 2 and 3 bring the results obtained for each situation, the analysis were realized through a CPU 

I5-8520U with RAM of 8GB.  

Tab. 1 presents the results obtained by the Interior Point algorithm. Note that the Max situation presented the 

smallest value, 32.270m³, for the objective function, and the other cases, Min and Max, achieved the objective 

function equal to 33.084 and 33.084m³ respectively. In relation to analysis time, the Min case results were almost 

2 and 3 times bigger than analysis Int and Max. 

Table 1. Results for the Interior Point Method 

 
Interior Point 

Min Int Max 

Iter 168 107 73 
F-Count 2038 1169 733 

f(x) 33.084 33.084 32.270 
Feasibility 0.00E+00 0.00E+00 0.00E+00 
First Order 
Optimality 

0.0004454 0.00002502 0.0002005 

Status 
Local minimum 

possible 
Local minimum 

possible 
Local minimum 

possible 
Number of Analysis 10 10 10 

Time (s) 14.771 8.847 5.832 
 

The results of the Active-Set method are shown in Tab. 2, and just like the Interior Point Method, the Min 

case presented the largest value for the objective function. Furthermore, when comparing the Int and Max case to 

Active-Set, it is observed that the first one spends the lowest number of iterations, objective functions counts and 

time, while the Max situation presents the lowest value to the gradient norm. 

     Table 2. Results for the Active-Set Method 

 
Active Set 

Min Int Max 

Iter 28 46 67 
F-Count 261 428 638 

f(x) 34.264 33.084 33.084 
Feasibility - - - 
First Order 
Optimality 

0.000283 0.000407 0.000285 

Status 
Local minimum 

possible.  
Local minimum 

possible.  
Local minimum 

possible.  
Number of Analysis 10 10 10 

Time (s) 1.956 2.959 4.294 
 

For the SQP algorithm (Tab.  3), a result similar to that observed in the Active-Set was obtained, where only 

the Min case did not return the smallest value of the objective function, and the Int situation was the most 

computationally efficient.. Again, the Int case was more effective in time, number of iterations and objective 

function counts, and the Max case obtained the lowest norm of gradient. 
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Table 3. Results for Sequential Quadratic Programming 

 
SQP 

Min Int Max 

Iter 36 49 60 
F-Count 360 474 563 

f(x) 34.264 33.083 33.083 
Feasibility 4.84E-10 2.58E-10 3.66E-09 
First Order 
Optimality 

0.0002309 0.00003944 0.00007064 

Status 
Local minimum 

possible. 
Local minimum 

possible. 
Local minimum 

possible. 
Number of Analysis 10 10 10 

Time (s) 2.405 3.388 4.212 
 

Regarding the design variables, it can be seen that in all analyses, the widths of the beams assumed the 

minimum value. It was also noted that, for the three algorithms, in the Int case results were the practice of the same 

values. Furthermore, the solution vector to SQP and Active-Set algorithms are similar for the three cases. 

5  Conclusions 

The results of the numerical experiment show that for this optimization problem the Interior Point algorithm 

performed worse than the Active-Set and SQP, both in terms of performance. The performance can be assessed 

by the processing time, and once again, the Interior Point Method rendered worse results. 

As for the selection of the initial values of the design variables, in SQP and Active-Set, it can be noted that 

the Int case, when compared to the Max case, presented better results in relation to the number of iterations, time 

and number of evaluations of the objective function, presenting itself as a viable and computationally less costly 

solution. It is also highlighted that the Min case leads to a non-ideal solution for both algorithms. For the Interior 

Point the best solution is obtained by using the Max case. 

Proposed as future research increase of number the starting points and so analyze other parameters like the 

succesfull rate. 
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