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Abstract. In this work, we solve an optimization problem of a known reservoir of the literature through an 

integrated optimization by a Genetic Algorithm (GA). The location of the wells and their flow rates are the 

variables. The main objective of this paper is to maximize the net present value (NPV). The optimization utilized 

the GA from Toolbox Optimization MATLAB to define, simultaneously, the best position for the wells and best 

flow rates for each well in each of the three defined control cycles. During the optimization process was performed 

a series of function evaluations using a Reservoir Simulator. Due to the high cost of this process and aiming to 

avoid it, a methodology with adaptive surrogate models was employed here. As the optimization problem is 

restricted, using an adaptive penalty method allowed the GA to run smoothly. The Egg Model is the study reservoir 

in this work. It was executed 20 optimizations to verify the uniformity of the obtained results. The best solution 

improved the NVP by 45.32% as compared with the original case. The methodology suggested here brought 

consistent results with significant improvements in the NPV, the main objective of this paper. 

Keywords: optimization, surrogate models, genetic algorithm, well placement and flow rate, reservoir engineering 

1  Introduction 

The reservoir engineering applications include considerable challenges that are of interest to the Oil & Gas 

Industry.  Between them, the optimization of flow rates of the wells and their locations, study objects here. Both 

problems have their particularities and involve, generally, complex models with high computational costs. 

Therefore, it is necessary to develop methodologies that enable the reduction of these costs. Because of this, 

surrogate models were employed to reduce the CPU time cost in the optimization process. The genetic algorithm 

from Toolbox Optimization MATLAB [2] was used to optimize the position of the wells and their flow rates, 

modifying the initial configurations to both parameters. Furthermore, genetic algorithms allow working with 

efficiency and fast response, dealing with the optimization problem and all its complexities. The well placement 

problem, for example, can be quite complex due to all possible solutions, multiple scenarios that can suffer 

influence by a series of reservoir characteristics, e.g., the reservoir size and the number of wells arranged in the 

field. Thus, the main objective here is to maximize the fields' economic return through the NPV, defining the rates 

of producer and injector wells and the best place for the wells aiming for optimum recovery to the studied reservoir. 

The principal reference for this paper is the study developed by Redouane et al. [1] about well placement 

optimization in fractured reservoirs utilizing a genetic algorithm (GA). Here, the methodology applied by 

Redouane was employed and adapted through a new approach where the location and flow rates are optimized 

simultaneously using the GA from Toolbox Optimization MATLAB. Previous studies have been developed about 

well allocation optimization or flow rates optimization with GA. Hamida et al. [3] investigated the best location 

for wells using a modified GA approach in oil fields. Ariadji et al. [4] studied a combinate technique with a 

modified GA and artificial neural network in different stages to optimize the location of horizontal wells. Onuh et 

al. [5] presented a study where a developed algorithm with java determines the best place for wells considering 

the reservoir permeability, fluid saturation, and pay zone thickness. Dada et al. [6] showed a new methodology 
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that determines the best control settings and best well allocation through Toolbox Optimization MATLAB to all 

optimization performed. 

Redouane et al. [1], in their study, indicated a way to work with surrogate models limiting the budget of 

simulations. They also explored promising regions around the best solution from the optimizer. This last method 

is called Minimizing an Interpolating Surface (MIS) and was presented by Jones [7]. All these techniques were 

applied and adapted in this work. 

2  Mathematical formulation 

The optimization occurs in an integrated process. Simultaneously, the location and flow rates of the wells are 

optimized by the Genetic Algorithm from Toolbox Optimization MATLAB to maximize the net present value 

(NPV) of the reservoir. The objective function values, NPV, are defined through numerical simulations using the 

IMEX simulator by Computer Modelling Group LTD (CMG) [8]. The lower and upper reservoir limits through 

their spatial coordinates, a minimum distance between wells, and the verification of the activity of the cells are the 

constraints of the location problem. About the last constraint, an index associated with each cell defines its activity 

or inactivity. It is used a centered block scheme where the coordinates i  and j  represent the topographic position 

of the wells in the reservoir grid. These variables must belong to the integers. 

The non-full capacity operation (NCO) formulation by Horowitz et al. [9] was employed to optimize flow 

rates. The concession time of the studied reservoir was divided into three control cycles with fix times. Each cycle 

has limits defined by the division between the daily limit of the wells and the group's production capacity where 

they are connected. Also, the summation of the wells' production and injection must respect the ceiling limit of 

their respective platforms. These are the constraints imposed on the flow rates problem. The time of the three 

control cycles was determined as follows: 1 0ccT   days (at the beginning), 2 600ccT   days and 3 2010ccT   

days.  

The formulation of the integrated optimization problem for well placement and flow rates is presented by eq. 

(1) as follows: 
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Where ( )f x  is the objective function (net present value); the design variable vector is represented by 

1 1 ,1 ,2 , ,, ,..., ,..., , , ,..., ,...,
w t ww n t t t w n nx x x x x x x x x    

, where , ,,w i w j wx x x    , i.e., i  and j  are design variables 

represented by coordinates of the wells and define the block position at the grid with wx  belonging to naturals, 

excluding zero ( * ). The cash flow F  at control cycle t  is given by Horowitz et al. [9], the discount rate applied 
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to capital is represented by d , the t  is the time at the end of the tht  control cycle. cIn , cJn  and cKn  are, in 

this order, the maximum number of blocks in the i , j  and k  directions of the reservoir grid; wn  is the total 

number of the wells on the reservoir; wdist  is a constant that establishes the minimum Euclidean distance between 

the well a  and any well b ; blockid  is an index that defines if a block is located in an active or inactive cell; ,i wx , 

,j wx  and ,k wx  are integers and real. In this study, for ,k wx  it is considered that the drilling of the well is done up 

to the cKn  limit keeping a topographic optimization as a general characteristic. ,t wx  is the vector part of the wells 

rates for all control cycles, tn  is the total number of control cycles. The constraints of the flow rates problem are 

defined by the lower and upper limits for each well described as ,
lb
t wx  and ,

ub
t wx , respectively. ,t wq  is the flow rate 

of the well w  (producer P  or injector I ), ,maxlQ  and ,maxinjQ  are the maximum total production flow of liquids 

(oil and water) and the maximum total injection flow of water allowed for the platform, respectively. 

3  Surrogate models 

In the face of the need to reduce the high costs, risks, and time involved in computational simulations, 

surrogate models are an alternative to overcome all these problems inherent in high-fidelity simulations. Schmit 

and Farshi [10] showed that surrogate models can be very efficient in solving some complex engineering problems 

as an optimization process. The substitutive functions can represent the physical problem bringing a fast response 

by simplifying the high-fidelity functions' behavior, still enabling to getting their gradients and free of numerical 

noises. 

3.1 Constructing the surrogate model 

A surrogate model is constructed from the generation of sampling points. Here, it was used the Design of 

Experiments (DoE) to determine the input values to the project space. The creation of an appropriated substitutive 

model requires a sampling technique. Here, it was employed the Latin Hypercube Sampling (LHS), developed by 

Romero et al.[11], due to its uniform spread of points.  

Different methods can be used to construct a surrogate model. They are organized into two groups: functional 

and physical. Here, the functional category was employed with the fitting data technique and the Radial Basis 

Function (RBF) as the adjustment model. Foroud et al. [12] compared the quadratic, radial and multiplicative 

model functions and concluded that the radial had the best response to the optimization process through genetic 

algorithms.  

In problems of constrained optimization, a part of the design space can not be feasible. Oliveira [13] indicates 

that about 60% of the individuals from the initial population must be feasible. In this work, this recommendation 

is followed. The initial size of the LHS technique is 5n, n is the number of variables of the problem. Here, the total 

of variables is 60 (24 for location and 36 for flow rates). This results in sampling with 300 points. New groups of 

points are inserted during the optimization process where the model is enriched and its accuracy is increased.  

4  Genetic Algorithm 

An integrated approach was built to maximize the NPV. A genetic algorithm was used considering an 

adaptive surrogate model method to obtain the best solution for the location of the wells and their injection and 

production rates. The GA is characterized as a robust heuristic optimization technique, an efficient resource for 

dealing with constrained problems. The GA from the Toolbox Optimization MATLAB [2] has its convergence 

options. Here, to global search from GA, the stopping criteria adopted were the maximum number of generations, 

equal to 100, and the minimum changes in the objective function value of the population with each improvement. 

The tolerance related to this last criterion is 61e . 

4.1 Constraints manipulation 

In this paper, two constraints manipulation methods were considered. Chromosome repairing adapted from 

Oliveira [13] and adaptive penalty function from Lemonge and Barbosa [14]. They are used at distinct moments 
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in the optimization process. The first one is applied due to the demand of feasible individuals in the GA's initial 

population in front of the problem constraints and employed at the initial search stage to correct the genes of the 

created individuals. The last one uses an adaptive scheme with population data, as objective function average and 

the level of violation of each constraint in the optimization process, instead of defining penalization parameters. It 

is used in the rest of the optimization process.  

4.2 Adaptive surrogate reservoir model (ASRM) 

In this paper, the updating of the substitutive model is made through perturbations around the best solution 

with the creation of 4 new points. Such perturbations affect the coordinates and flow rates based on the best result 

for well placement. After that, these 4 points are evaluated in the objective function by the simulator and added to 

the substitutive model, updating it with each new iteration. This methodology is based on Redouane et al. [1]. He 

established a new approach in the optimization process to create and enrich the surrogate model defining a budget 

of iterations ( i ) for the simulations. Here, the method is improved by making new points from perturbs in the 

optimizer's best solution using a technique that modifies some wells' location and flow rate for each point created. 

The ASRM procedure by GA for this paper is described in the steps below. 

1. Creation of the surrogate model with 5n  size. 

2. Surrogate-based optimization by GA to find the best solution ( )gaxstr . 

3. Evaluation of gaxstr  in the simulator ( )MAXsurg . Check convergence. If convergence is ok, 

BESTmax  and BESTpnt  are updated. 

4. Definition of a dynamic domain ( )D  with 4 different points generated based on the best solution found 

by GA. These points are created around the gaxstr  employing random perturbations of random wells. The 

process is made in two steps: coordinates, first and flow rates in sequence. Initially, 5 wells from the best 

individual are selected randomly. Individually, it is verified the Euclidean distance ( )ED  of the well 

position to be perturbed to the center of the reservoir. The Egg model reservoir has a box shape 

encompassing active and inactive cells. Then, a circular influence region was considered to standardize 

the perturbation movements. The region diameter ( )d  is equivalent to reservoir half size. The size 

movement is equal to one or two blocks that is defined randomly. So, if the ED  is smaller than the 

defined radius ( / 2)d , the coordinate movement is done to the borders. Otherwise, move toward the 

center. About the flow rate perturbations, the same wells previously chosen have their rates modified 

following lower and upper limits for any changes. 

5. Evaluation of the 4 new individuals at the simulator and creation of the group 2L  containing their 

respective objective function values. 

6. The enrichment of the surrogate model with 5 points: the best solution by GA ( )gaxstr  and the individuals 

from domain D . These points are inserted in initial population for the next search. 

7. The loop 2( )L  is applied i times until the convergence or the maximum number of iterations max( )i  be 

reached. Define 1i   at the beginning of the optimization process and increment every time that passes 

by the loop as 1i i  . 

8. The previous step (step 7) is repeated until the loop finishes by one of the stopping criteria. In this paper, 

the stopping criteria defined are the maximum number of iterations max( 60)i  , representing a total 

number of function evaluations equal to 300 ( 5n ) for model enrichment, and the convergence represented 

by eq. (2). Then, the best individual is the optimized solution. 

                                           6( )
1 .

MAXsurg fit GA
convergence e

MAXsurg


    (2) 

5  Egg Model: discussion and results 

The Egg Model, a benchmark reservoir proposed by Jansen et al. [15], was used in this study to validate the 

methodology presented here. The main features of this reservoir are the two-phase flow (oil and water) and the 

number of wells defined by 8 injectors and 4 producers, totalizing 12 vertical wells as showed in Figure 1. The 

grid is modeled with 60 by 60 by 7 representing the number of blocks in i, j, k directions, respectively. Thereby, 
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in this model, there are 25,200 cells where 18,533 are active. The concession time to the exploitation of the 

reservoir is 3.600 days. The values of water injection cost, water produced costs, and produced oil price used by 

Siraj et al. [16] were employed as reference economic parameters in this paper. 

 

 

Figure 1. Egg model with permeability and initial well placement scheme (PROD: production well, INJECT: 

injection well). 

The optimization problem formulation considered 2 variables of location for each well and 1 variable per 

well for each of 3 control cycles, resulting in a problem with 60 variables (24 for location and 36 for flow rates). 

In this paper, through the Genetic Algorithms from Toolbox Optimization MATLAB, were executed 20 

optimizations runs. The size of the surrogate model, without adaptation, is 5n, and the size of the enrichment is 

5n, n is the number of variables of the problem. 

The literature previously described the initial position of the wells, representing the first part of the variables 

vector. One simulation with the initial layout of the wells, where the simulator controlled all the flow rates 

internally, defined the initial flow rate values. From this, the values corresponding to each control cycle at their 

respective times were extracted. The results of optimizations modified the original positions of the wells and their 

initial flow rates. Table 1 shows the flow data used for the base case of all runs and the optimized results of the 

best solution found. Figure 2 presents the best solution for well location through superposition, comparing the base 

and optimized cases. The well placement of producers (on the left) and injectors (on the right) are represented 

below.  

 

Table 1. Flow results (m3/day) – Base case and Optimized case (best solution) 

Case Base Optimized 

Control Cycle 1 2 3 1 2 3 

P1 120.0000 120.0000 120.0000 60.7202 69.5054 81.8303 

P2 84.9019 64.8176 98.0790 8.8157 54.0469 114.2730 

P3 103.1475 95.1824 98.5156 110.4510 3.0747 13.2759 

P4 91.9505 120.0000 83.4055 117.3860 3.2801 91.8588 

I1 79.5000 79.5000 0.0000 21.6698 65.4207 51.4735 

I2 79.5000 73.7037 79.5000 7.2299 6.4296 36.2244 

I3 48.5690 41.0363 55.7842 64.0096 25.2547 26.7262 

I4 39.3568 63.3590 62.9914 60.7281 60.7793 7.3577 

I5 54.0223 39.4337 37.3381 5.7259 75.9495 2.7499 

I6 30.8644 0.0000 79.5000 20.9846 27.4394 20.3574 

I7 64.0231 78.1898 63.3306 60.3074 34.7712 72.2169 

I8 44.1643 29.9599 21.8608 33.2188 27.9533 54.9812 
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Figure 2. Well positions for producers (on the left) and injectors (on the right). 

 

The best solution to an integrated optimization, well placement and flow rates simultaneously, by GA 

improved the NPV by 45.32% related to the base case. The recovery methodology employed here is the main 

reason for the water decrease that directly impacted the NPV increase. This reduction of produced water can be 

noticed through the cumulative water and water cut parameters. This reduction of produced water is noticed 

through the cumulative water and water cut parameters in Figure 3. The cumulative water of the optimized case 

presented a drop of about 80.15% over the 10 years of exploitation time compared to the base case. The water cut 

of the optimized case (86.62%) had a decline of about 9.03% as compared with the base case (95.65%). This 

decline is due to the optimized water cut rate was kept at a lower level for a significant time, especially at the 

beginning of the simulation. It is fundamental to mention the late water breakthrough that was crucial to best 

results in the optimization process. 

 

    
 

Figure 3. Water and oil cumulative production (on the left) and the water cut (on the right) for the original case 

(hidden lines) and the optimized case (full lines) to Egg model. 

 

The statistical results of all optimization runs are organized in Table 2. It shows the improvement details by 

GA. 

Table 2. Optimization results summary 

Number of 

optimizations 

Best 

solution       

(%) 

Worst 

solution     

(%) 

Average 

improvement 

wrt base case 

(%) 

Standard 

deviation 

(%) 

Number of 

objective function 

evaluation (best 

solution) 

Number of 

objective function 

evaluation 

(average) 

20 45.32% 29.88% 35.82% 4.70% 601 601 

6  Conclusions 

The Genetic algorithm from Toolbox Optimization MATLAB was used in this paper aiming to maximize the 

Net Present Value (NPV) of the Egg Model reservoir. The adopted methodology involved jointly optimizing the 
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position and flow rates of the wells, resulting in new well placement and new flow rates for all the control cycles 

defined. The results of optimization demonstrated satisfactory improvements in the NPV for all of the 20 runs. 

The best solution improved the NPV by 45.32% as compared with the original case. The average increase is 

35.82%. The standard deviation of the optimizations is 4.70%, a low value that demonstrates homogeneous and 

consistent results in the study developed in this paper. The excellent results of NPV improvement are due to the 

primary strategy adopted for oil recovery that occasioned a substantial decline of the produced water over the 

exploitation time of the reservoir. As previously mentioned, this decrease can be noticed through the results of 

water cut and cumulative water. The first parameter showed a difference of about 9.03% between the base case 

(95.65%) and the original case (86.62%). The cumulative produced water was reduced by approximately 80.15% 

in the optimized case. Concerning the accumulated oil, it was noticed a decrease in production. This is not the best 

scenario for the Oil & Gas Industry because one of their main interests is to maximize oil recovery and not just 

increase the reservoir's Net Present Value. One suggestion to improve these results is considering a strategies 

combination, e.g., a global strategy sequentially with a local. The methodology suggested here brought consistent 

solutions with significant improvements in the NPV, the main objective of this paper. 
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