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Abstract. This work develops an exploratory study aiming at modeling (from a purely mechanistic point of view) 

the complex interactions that are observed between the Endothelial Glycocalyx Layer (EGL) and Low-Density 

Lipoprotein (LDL) particles, serving as a gateway to more complex studies about the transport of macromolecules 

in arterial vessels. Here, the EGL is represented through an advanced finite element formulation for thin, large-

deformation beams, following a continuum description. The LDL particles, in turn, are handled through a discrete 

element approach. The two phases (discrete and continuum) interact with each other through multiple contacts and 

collisions, the forces and moments of which being thoroughly computed and passed from a discrete element (DEM) 

to the finite element (FEM) model (and vice-versa) at run-time in a staggered, iterative solution scheme, following 

the framework developed by the authors in Gay Neto and Campello [1] and Andreotti et al. [2]. The fluid (blood) 

phase is represented only indirectly, through drag forces applied on both the FEM beams and DEM particles. 

Possibilities of the proposed strategy are illustrated through a preliminary numerical example, herein taken in the 

form of a model problem. 

Keywords: Endothelial Glycocalyx Layer, Low-Density Lipoprotein Particles, Finite Element Method, Discrete 

Element Method. 

1  Introduction 

Atherosclerosis consists of the accumulation of atherogenic lipids such as low-density lipoproteins (LDLs) 

within arterial walls (Liu et al. [3]). There have been many studies in the area trying to unfold the transport of 

macromolecules within the arterial wall through both experiments and computational simulations (Karner et al. 

[4], Ai and Vafai [5], Saidel et al. [6]). However, most of them ignored the Endothelial Glycocalyx Layer (EGL), 

which functions as an inhibitor of the diffusion of LDL near the luminal surface of the endothelium (Vincent et al. 

[7]). The EGL is a thin (circa 500 nm height), fur-like, protein-lipid layer that coats the membrane of some types 

of cells and, in particular, the luminal surface of blood vessels (Pries et al. [8]). Its main roles are to act as a 

modulator of permeability in the transcapillary exchange of water, as a mechanotransducer of fluid shear stress to 

the endothelial cytoskeleton, and as a regulator of red and white blood cells interactions, with emphasis on the 

inflammatory response. For blood flows, it is known that the mechanical properties of the EGL may strongly 

influence its interaction with passing red and white blood cells (Weinbaum et al. [9]), as well as with small 

suspended lipid (especially LDL) particles. This includes its deformation owing to blood fuid-dynamic loads, as 

well as contact interactions with the passing cells and lipid particles. From a mechanistic point of view, the EGL 

resembles thin, highly deformable fur threads fixed at the base at rather patterned points of the vessel’s interior 

walls, with elastic properties that are fairly well known. 

To understand the role of the EGL as a physical barrier, in this work we develop an exploratory study aiming 

at modeling (from a purely mechanistic point of view) the complex interactions that are observed between the 

EGL and LDL particles, serving as a gateway to more complex studies about the transport of macromolecules in 

the arterial vessels. The EGL is represented through an advanced finite element (FEM) formulation for thin, large-

deformation beams, following a continuum description. The LDL particles, in turn, are handled through a discrete 
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element (DEM) approach. We use elastic properties established in the literature, and analyze the mechanical 

behavior of the EGL’s structure when it comes into contact with passing LDL particles. The fluid (blood) phase is 

represented only indirectly, through drag forces applied on both the FEM beams and DEM particles. Throughout 

the text, italic letters ( , , , , , ,a b A B ) denote scalar quantities, boldface italic small-cap letters (

, , , ,a b ) denote vectors and boldface italic capital letters ( , ,AB ) denote second-order tensor in a three-

dimensional Euclidian space. 

2  Description of the EGL structure and properties 

 According to Weinbaum et al. [9], computer-enhanced images showed that the EGL is a three-dimensional 

fibrous network consisted of fur-like threads of circa 10–12-nm-diameter, with focal scattering centers spaced of 

20 nm in all directions, and a length varying from 150 to 400 nm, forming a “bush” structure in an hexagonal array 

(when seen from the top) with a spacing of 100 nm (center to center), as schematically represented in Fig. 1. 

One important parameter for defining the deformation of the EGL (and thereby to our mechanical analysis) 

is its flexural rigidityEI (where E  is the elastic modulus and I  the bending inertia). However, there is no direct 

measurement of it. Han et al. [10] developed a sophisticated large deformation model, predicting the time-

dependent change in the shape of the core proteins after the passage of a white blood cell, arriving at an EI of 

 pN nm2490 . We will use this value here. 

3  Description o f the idealized model 

To construct our mechanical model to assess the behavior of the EGL interacting with lipid particles, we will 

first summarize our kinematical model for large-deformation beams. The EGL bush-like structure will be 

represented as a set of highly deformable beams (the fur-like threads) fixed at the base, following an advanced 

finite element formulation. Then, we will summarize the description of the the LDL particles through a discrete 

element approach, whereby we map the motion of each individual particle. Lastly, as the two phases (discrete and 

continuum) may interact with each other through multiple contacts and collisions, we will summarize our 

interaction framework, as developed by the authors in Gay Neto and Campello [1] and Andreotti et al. [2]. 

3.1 Summary of the FEM model 

Let us consider a beam with reference length l  and local unitary orthogonal system 1 2 3{ , , }r r re e e , with 

corresponding coordinates 1 2 3{ , , }r r r . We follow the geometrically-exact quasi-static model of Pimenta and Yojo 

[11] and Pimenta, Campello and Wriggers [12], which will be discretized and solved by the finite element method. 

Accordingy, each cross-section remains undeformed in time and may only displace and rotate as a rigid body. The 

position of the beam´s material points, in the reference configuration, is represented by vector , as seen in Fig. 

2-a, which is written as 

Figure 1. Schematic representation of the EGL. The left figure shows the view of core proteins (fur-like threads) 

and its anchorage to the underlying actin cortical cytoskeleton. The right figure represents the top view of the 

hexagonal arrangement and its cluster foci. Adapted from Weinbaum et al. [9]. 
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 ra , (1) 

where 3
re  is the position of points along the beam axis (with [0, ]l ) and 1 1 1 1

r r ra e e  is the 

reference director, which gives the relative position of points of the cross-section w.r.t. the beam axis. In the current 

configuration, we define a local orthogonal system 1 2 3{ , , }e e e  with corresponding coordinates 1 2 3, , , with 

which the motion is described by the vector field ( )x x , with the material points positions given by 

 x z a , (2) 

with z u  describing the position of points in the deformed beam axis, u  the displacement vector and 
ra Qa the current director at those points. The rotational field is parameterized using the so-called Rodrigues 

rotation vector e , with 2 tan( 2) , in which e  is the classical Euler rotation vector, with 

the magnitude of the rotation and e  the unit rotation axis. Thus, the rotation tensor Q  reads as 

 
2

4 1

21
Q I A A , (3) 

with Skew( )A . Derivation of (2) w.r.t.  renders the deformation gradient, from which the model´s strains 

follow. The stresses, in turn, are described by the first Piola-Kirchhoff stress tensor, with which we compute the 

cross-sectional stress resultants (forces and moments) and therefrom apply the virtual work theorem as to build 

the model´s weak form. We will not report their expressions here for conciseness (the interested reader is referred 

to the above-mentioned references). Finite element discretization of the weak form (with the axis´ displacements 

and rotations as unknowns) is performed in a standard way, using 3-node elements with quadratic shape-functions. 

For time integration of the beam´s dynamics, we adopt a implicit Newmark algorithm (see, e.g., Wriggers [13]). 

3.2 Summary of the DEM model 

The motion of the discrete solid particles follows a Lagrangian description here. We assume the particles are 

spherical. Any deformation they experience is presumed to be very small and localized, therefore they can be 

treated as rigid bodies. The model herein summarized is described in depth in Campello [14, 15]. Let us consider 

a system of PN  particles, each one with mass im , radius ir  and rotation inertia 22 5( )i i ij m r , with 

1, , .Pi N  The position of a particle will be denoted by vector ix , its velocity by iv  and its spin by iw . The 

rotation vector relative to the beginning of the motion is denoted by i , whereas the incremental rotation vector 

is denoted by i . The rotation field here is also parameterized using the Rodrigues rotation vector (see Eq. (3)), 

instead of the classical Euler rotation vector. For a detailed account of the rotation description, we refer the reader 

to Campello [16]. 

From Euler’s laws, the following equations must hold for each particle at every time instant t , 

 tot totand ,i i i i i im jx f w m  (4) 

in which tot
if  is the total force vector acting on the particle and tot

im  the total moment vector concerning the 

particle’s center. The superposed dots denote time differentiation. The total force tot
if  is the sum of the following 

force contributions 

 drag con,p fric,p con,beamtot nf ,i i i i i i imf g + f f f f f  (5) 

where g  is the gravity acceleration vector, drag
if is the drag force vector, nf

if are the forces due to the near-field 

interactions with others particles, con,p
if  are the normal forces due to contacts stemming from collisions with other 

particles as well as obstacles and rigid walls (herein given through Hertz contact theory), fric,p
if  are the tangential 

forces due to friction caused by these collisions (herein given through a consistent stick-slip scheme) and con,beam
if  

the forces due to contacts with FEM beams (which include both normal and frictional contributions, coming from 

solution of the particle-beam contact problem as described in section 3.3). In the same way, the total moment 

applied on the particle is given by the sum of the following contributions: 

 fric,p con,beamtot
i i im m m  (6) 

where fric,p
im  is the moment generated by the friction forces from other particles (and obstacles and rigid walls) 
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and con,beam
im  is the moment generated by the friction forces from neighboring beams. Detailed expressions for 

these force and moment contributions will not be reported here for conciseness (see Campello [14]). Numerical 

time integration of Eq. (4) provides the particles’ motion. This is done here through the integration algorithm 

proposed in Campello [14], which has both implicit and explicit versions. In this work, we adopt the explicit 

version only, since the inter-particle contacts inherently require very small time-steps for an accurate contact 

representation, thus rendering the implicit version unnecessary. The integration algorithm will be omitted here. 

3.3 Particle-beam and beam-beam contact scheme 

The interaction between particles and beams follows a simple strategy, which has been successfully proposed 

by the authors in Gay Neto and Campello [1]. In this approach, the beam is assumed to have a circular cross-

section, and for contact detection purposes it is treated as a set of fictitious spheres (with the same radius of the 

beams’ cross-section) whose centers lie on the nodes of the beam’s FEM mesh (see Fig 2b). We emphasize that 

this is for the sake of contact detection only, not for its kinematics. The reason is the simplicity of such contact 

topology (which amounts to a sphere-sphere contact), becoming one of the advantages of this approach because it 

spares the solution to a minimum distance problem, which could be untenable for large multi-particle, multi-beam 

systems. We note that the level of refinement of the beam’s finite element mesh is dictated by the number of 

fictitious spheres that is desired for contact detection - the more refined, the more accurate the contact resolution. 

As contact occurs, the normal gap gn  of the contact pair is defined as a function of the spheres’ centers 

positions, i.e., 

 gn beam i beam ir rx x  (7) 

in which beamx  is the beam’s sphere position (which coincides with the position of a node of the underlying FEM 

mesh) on the current configuration and beamr  its cross-section radius (see Fig. 2b). The contact pair will add a 

contribution nW  to the potential energy of the beam, and this is done here through the penalty method, with a 

normal penalty parameter n  such that g21 2( )n n nW . The corresponding contribution on the beam´s weak 

form is g gn n n nW , with gn beam in x x , where n  is the contact normal vector as follows 

 beam i

beam i

x x
n

x x
. (8) 

The contact will generate a force con,beam gn nif n  on the particle, which will be summed up on the 

particle’s total force vector tot
if , as seen in Eq. (5). The tangential (friction) contribution is handled through a 

stick-slip scheme (not reported here for conciseness). For beam-beam interactions, in turn, we follow the strategy 

 
 

Figure 2.  The left figure describes the beam’s geometry and basic kinematical quantities. The right figure 

presents the imminent contact between a particle and a fictitiuous sphere of a beam. 
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proposed in Gay Neto, Pimenta, and Wriggers [17], which also resorts to the concept of fictitious spheres for 

dectection purposes, along with a penalty formulation similar to the one described above. The scheme will be 

omitted here. 

The models were implemented in our in-house codes PSY and GIRAFFE, in which PSY [18] (written in 

Fortran) handles the DEM analysis of the particles, whereas GIRAFFE [19] (written in C++) handles the FEM and 

contact analyses of the beams. The two codes were coupled in an efficient manner, making use of the C/C++ and 

Fortran interoperability capacity, enabling full run-time, memory-sharing communication between the codes. This 

unified project was called GIPSY, and further details are described in Andreotti et al. [2]. 

4  Preliminary results 

In this section we present some preliminary results obtained with a simple numerical example. Accordingly, 

the bush-like EGL structure is represented by a set of beams (36 in total for each “bush”) following the arrangement 

seen in Fig. 1. We consider here seven of such bushes. Each beam is discretized with twenty 3 three-node finite 

elements. To simplify matters, since the EGL diameter varies between 10~12 nm over each filament, the beams 

were considered with fixed diameters of 10 nm, and their length set to 300 nm. Consequently, the bending inertia 

I  is  m4344.909 10 , and since  Nm2 284.9 10EI , an elastic modulus of 0.998E  MPa follows. The 

mass density considered for the EGL is  kg/m31053 .EGL As the action of gravity is negligible in such small 

scales, it is not considered here. 

 
(a) Initial State 

 

(b) Time: 71.5 10 s 

 
(c) Time: 73.0 10 s 

 
(d) Time: 76.0 10 s 

Figure 3. Snapshots of the motion at some selected time instants. 

The LDL particles' diameters vary among humans, and their size is intrinsically related to the total and 

cardiovascular mortality (Grammer et al. [20]). For that matter, we estimated a range of 20-30 nm for the particle 

diameter, with an elastic modulus of 1.5 MPa (which is inside the range of 0.1~2.5 MPa, defined by Takeda et al. 

[21]).  

The particles and the beams are assumed to be immersed in an arterial vessel, inside of which we assume that 

the blood flows at a constant velocity of  m/s{1.3;0.0;0.0}  (this value is taken from Klarhöfer et al. [22], which 

defines some average blood flows in arterial and venous blood vessels). The blood has a mass density of 

 kg/m³1060bl (Kenner [23]) and an average viscosity of  Pa s33.5 10  (Nader et al. [24]). The penalty 

parameter for the beam-particle (and for the beam-beam) contact is 1.488 10  N/m3
n . The endothelial 

surface is assumed flat and rigid. The time step adopted is  s101 10t  (for both DEM and FEM solutions), 
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with a simulation time of  s76.0 10t . The convergence tolerance within the Newton iterations is 
810tol , for unbalanced forces, moments, incremental displacements and rotations. No tolerance was needed 

on the DEM solver since we are using the explicit version of the method.  

We also include structural damping (i.e., damping on the beam’s deformation), assuming a Rayleigh type 

damping, with 0  and 51 10 . Inasmuch, the normal damping parameter for particles is defined by 

0.15con  (Campello [14]). 

    
(a)  Time: 73.0 10 s 

   

(b)  Time:  76.0 10  s 

Figure 4. Snapshots of of the motion focusing on the EGL deformation through time. The left figure shows the 

complete system, the midle a side view, and the right one the EGL deformation caused by the particles at the 

specific time step. 

As it can be seen from the snapshots of the simulation in Figs. 3 and 4, as soon as the LDL particles approach 

the EGL beams, they begin to interact through multipe contacts and collisions, causing the front beams to bend in 

the direction of the flow and eventually touch other beams that are at the background. The beams, in turn, rebounce 

some of the LDL particles and also divert the particle flow a bit sideways and in the vertical direction (both up and 

down) . The interaction is rather complex, and it can be noted that the EGL structure proves to be a rigid physical 

barrier for the LDL to interact with the endothelial surface. 

5  Conclusions 

The main purpose of this work was to perform an exploratory investigation of the interaction between LDL 

particles with the EGL structures that are present in the endothelial surface of the blood vessels. We acknowledge 

that the problem involves more complex phenomena in addition to the ones herein considered, but at least from a 

mechanistic point of view, the contact method enforced in our scheme proved to handle properly the motion of 

both discrete and continuum phases, allowing multiple contacts between each other. The incorporation of more 

physical phenomena in the model (e.g., adhesion forces) is currently under work. 
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