
Slope Stability Analysis using Element-Free Galerkin Method and a visco-
plastic approach with the shear strengh reduction technique

Leandro H. S. Yorinori1,2, Roberto D. Machado1,3

1Methods in Engineering Graduate Program, Federal University of Paraná
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Abstract. The majority of slope stability analyses are performed using either the computational approach of tradi-
tional Limit Equilibrium Methods (LEM) or the Finite Element Method (FEM). Several applications in geotechni-
cal engineering involve large displacements, thus it becomes attractive to employ meshless methods. In this paper
the meshless method Element-Free Galerkin (EFG) with a visco-plastic approach is applied to the slope stability
analysis. An analysis is performed to demonstrate the capability of the EFG model to evaluate the slope stability,
which is considered as a plane strain state for the stability analysis of homogeneous, isotropic and dry soil slope.
A non-linear EFG approach with the shear strength reduction technique is applied to assess the factor of safety and
potential slip surface. The results show good agreements with values found in the literature of classical methods
(LEM and FEM), and with a meshless method. The failure criterion is assumed to be reached when the iterative
process does not converge after a maximum number of iterations. The location and form of the potential slip sur-
face are naturally obtained from the results of displacements and principal plastic strains.Therefore, the principal
plastic stress or strain analysis becomes a strong alternative to verify the slope stability state.
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1 Introduction

A slope failure can have catastrophic consequences, as has been observed in Brazil after the collapse of
mining dams in Mariana and Brumadinho cities in 2015 and 2019, respectively (e.g. da Silva et al. [1]). The
slope stability analysis verifies the stability state of a slope. Most slope stability analyses are performed using
computational versions of the traditional Limit Equilibrium Methods (LEM) (Duncan and Wright [2]) or Finite
Element Method (FEM) (Griffiths and Lane [3]). FEM presents advantages over LEM since the former considers
the stress-strain relationship of the soil, and it is not necessary to assume hypotheses about the form and location
of the failure mechanism. Despite its established use, FEM has limitations. Many applications of geotechnical
engineering involve large displacements. In this aspect, FEM exhibits difficulties due to a mesh distortion problem
inherent in the method. Considering this, it is attractive to use the so-called Meshless/Meshfree (MFree) Methods.

Recently, the MFree methods or particulate methods have been actively developed and applied in slope sta-
bility analysis. Several MFree methods have presented results that are in agreement with traditional methods
regarding the factor of safety (FOS) and critical slip surface. Furthermore, MFree methods have the advantage of
being able to capture the behaviors of large post-failure displacements (Bui et al. [4], Kwok et al. [5]). Bui et al. [4]
and Li et al. [6] use Smoothed Particle Hydrodynamics (SPH) method (Lucy [7], Gingold and Monaghan [8]) in
the analysis of slope stability. This type of analysis is also performed by Gago et al. [9] using the Meshless Local
Petrov-Galerkin (MLPG) method (Atluri and Zhu [10]) through an elastoplastic constitutive model. Kwok et al. [5]
use Semi Lagrangian Reproducing Kernel Particle Methods (SL-RKPM) (Guan et al. [11, 12]) in the analysis. The
method General Particle Dynamics (GPD3D) method is proposed by Zhou et al. [13] to perform slope stability
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analysis.
In Qin and Wang [14]’s research, the Element-Free Galerkin (EFG) method is used in slope stability analysis,

in which the main indices which influence slope stability are established and the analytical hierarchy process is
used to determine the weight of the indices. By changing the data of the main indices, the changes of the nodal
displacements are obtained. Then, it is possible to reach the final weight of the indices based on the interaction be-
tween the results obtained by the EFG method and the analytic hierarchy process. From this, a fuzzy comprehensive
evaluation model is built. The purpose of this work is to use the EFG with the shear strength reduction technique
to estimate the factor of safety. Material non-linearity is introduced by the visco-plastic model of Zienkiewicz and
Cormeau [15].

2 Element-Free Galerkin Method

The Element-Free Galerkin (EFG) method, proposed by Belytschko et al. [16], is a numerical method used
to solve differential equations. EFG is a global meshless method based on Galerkin’s weak form and uses Moving
Least Square (MLS), which was developed by Lancaster and Salkauskas [17], to approximate the field variable.
Several meshless methods have been developed because of the MLS approach. Various authors presented the
EFG formulation in great detail (e.g. Belytschko et al. [16], Liu and Gu [18], Yorinori [19], Fries and Matthies
[20], Nguyen et al. [21]). The procedure for solving Boundary Value Problems using the EFG method is briefly
described below.

Once the geometry of the problem is defined, the problem domain is represented by a set of properly dis-
tributed field nodes that comprise the entire domain and boundary of the problem. In the MLS approach, a local
support domain is assumed for a point of interest x (a sample point, field node or a quadrature point). The field
nodes within the local support domain are used to compute the MLS shape functions at the point of interest x.
The approximation of the field variable at the point of interest, u(x), is done by a linear combination of the nodal
values of the shape functions, φi(x) and the nodal values of the field variable, ui, for the nodes that are within the
local support domain.

u(x) =

n∑
i=1

φi(x)ui (1)

where n is the number of nodes within the local support domain of the point of interest x. The construction of the
shape functions is one of the most important issues in a MFree method because the function approximation process
is defined based on an arbitrary set of nodes and therefore no mesh is required in the process.

The discrete system of equations is built in a process that involves the computation of nodal portions of the
stiffness matrix,K, and force vector, F , which are added to the global system. In EFG, background cells are used
to calculate the weak form integrals of the equilibrium equation. At the end of the process, the eq. (2) system is
obtained.

KU = F (2)

where U is the global vector of the field variable’s nodal parameters.
Since the MLS shape functions do not have the Kronecker delta function property, special procedures are

needed to impose the essential boundary conditions. The most used methods are the Penalty method and Lagrange
multipliers method. For the same reason, after solving the system of equations from eq. (2) toU , the approximation
of the field variable at a point of interest is done by the interpolation showed in eq. (1).

3 Slope Stability Analysis using the Element-Free Galerkin Method and a visco-plastic
approach

A computational model was developed to perform slope stability analysis using the visco-plastic algorithm
(e.g. Griffiths and Lane [3], Zienkiewicz and Cormeau [15], Yorinori [19], Perzyna [22]). The factor of safety must
be estimated, which is defined as the factor by which the soil strength parameters tanφs and c must be reduced for
the slope failure to occur, where c is the cohesion and φs is the friction angle of the soil. This process is currently
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known as the shear strength reduction technique (e.g. Griffiths and Lane [3], Matsui and San [23]). The factored
shear strength parameters cf and φf are given by:

cf =
c

FOS
(3)

φf = arctan

(
tanφs
FOS

)
(4)

In the analysis, several FOS values are progressively tested. If the FOS value under test reduces the shear
strength, resulting in failure, this will be adopted as the factor of safety for the slope under analysis.

The EFG method is used to approximate the field variables and to construct the discrete equation system. The
global stiffness matrix is calculated only once, as is the vector of gravitational loads.

The elasto-plastic problem is solved by repeated elastic iterations over ”time” using the constant stiffness
method, in which material non-linearity is introduced by iteratively modifying the load vector. For each iteration,
the stress state at each Gauss point is established. The state of stresses at the Gauss point is compared with the
Mohr-Coulomb failure criterion by calculating the failure function, F . In terms of principal stresses (σ1, σ3), F is
expressed by eq. (5) (assuming compression with a negative sign).

F =
σ1 + σ3

2
sinφf − σ1 − σ3

2
− cf cosφf (5)

The function is defined so that it is negative within the failure envelope, zero over the envelope, and positive
when stresses are outside the failure envelope. Positive values are not allowed and a yielding stress redistribution
process must be used. Equation 6 schematically shows the relationships of the values assumed for F .

F < 0 Stresses inside failure envelope (elastic)
F = 0 Stresses on failure envelope (yielding)
F > 0 Stresses outside failure envelope

(yielding and must be redistributed)

(6)

The redistribution of plastic stresses occurs by the visco-plastic algorithm (e.g. Griffiths and Lane [3],
Zienkiewicz and Cormeau [15], Yorinori [19], Perzyna [22]). The plastic stresses are redistributed in the load
vector that will be used in the next iteration.

At the beginning of each iteration, a convergence test is performed. The convergence test is used to verify
the relative difference of the nodal displacement parameters between the current and the previous iteration. If
the values of the relative differences for all degrees of freedom are smaller than the prescribed tolerance value
(TOL= 10−4 is adopted in this paper), then the system is said to be convergent. A maximum value of iterations
is prescribed and when reached it is assumed that there was no convergence (1000 iterations are adopted for this
work). In this paper, the inability of the model to converge is admitted as the failure criterion, so the factor of
safety that reduces the shear strength to the point where the model is unable to converge is the one adopted for the
slope under analysis.

4 Results and discussions

A slope stability analysis is performed using the proposed model. The results obtained during the analysis
are compared with the solutions of classical methods (LEM and FEM) and an MFree method (MLPG). Quadratic
basis functions are used to compute the shape functions. The geometry of the slope to be analyzed is shown in
Fig. 1. The slope height H = 1.0 m is adopted and the proportion factor for the foundation layer is D=1.5 (See
Fig. 1). The slope is subject to the self-weight of the soil.

The boundary conditions are given as vertical rollers on the left and right boundaries, and full fixity at the
base. The Penalty method is used to impose the essential boundary conditions. The slope is composed of dry,
homogeneous, and isotropic soil. The soil parameters used in the analysis are friction angle, φs; cohesion, c;
Young’s modulus, E; Poisson’s ratio, ν; dilation angle, ψ and unit weight of the soil, γs. The values adopted for
these six parameters are presented in Table 1.
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Figure 1. Slope geometry. Homogeneous slope with a slope angle of (2:1); H=1.0 m, D=1.5. φs = 20◦, c/γsH =
0.075.

Table 1. Soil parameters used in slope analysis with homogeneous, isotropic and dry soil.

Soil parameter Nomenclature Value Unit

Friction angle φs 20 ◦

Cohesion c 1.5 kN/m2

Young’s modulus E 5× 104 kN/m2

Poisson’s ratio ν 0.3

Dilation angle ψ 0 ◦

Unit weight γs 20 kN/m3

In the analysis, 820 field nodes are used for domain discretization. This value was chosen based on a conver-
gence analysis of the displacement results. The shear strength reduction technique is applied for FOS values that
are progressively increased, ranging from 1.40 to 1.60. From the value of 1.50, a more detailed approach is applied
and therefore the FOS values are increased by an increment of 0.01 until the model is unable to converge. For
the analysis, the dimensionless displacement is defined as Eδmax/γsH

2, where δmax is the maximum nodal dis-
placement at convergence. The data obtained from dimensionless displacements, Eδmax/γsH

2, and the number
of iterations for convergence to be achieved for the different FOS values tested are presented in Fig. 2.

The results of dimensionless displacements reveal a sudden increase in its value when the model can’t con-
verge up to the established iteration limit, indicating the failure of the slope. This behavior occurs for FOS=1.60.
Therefore, this is the value adopted as the factor of safety for the slope under analysis. Table 2 shows FOS values
obtained by Gago et al. [9] for FEM, LEM and MLPG. These FOS values, when compared with the FOS calculated
using the EFG model, reveal a good agreement with the FEM and LEM. The FOS value obtained by the MLPG is
significantly lower than that achieved by the EFG model.

Table 2. Comparison between Factors of Safety obtained by Gago et al. [9] through different methods and by the
proposed EFG model

Numerical Method FOS Reference

FEM 1.57 Gago et al. [9]
LEM - Jambu (Geostudio 2007) 1.62 Gago et al. [9]

MLPG com RBF 1.52 Gago et al. [9]
EFG 1.60 Proposed model

Figure 3 depicts the configuration of the slope at the rupture (FOS=1.60). The deformed configuration (Fig. 3
a) demonstrates that the failure mechanism occurs due to the slipping of the foot of the slope. The nodal displace-
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Figure 2. Dimensionless displacements (in black) and number of iterations do convergence (in gray) for different
FOS values. At FOS=1.60, there is a sudden increase in the dimensionless displacement and the algorithm is
unable to converge within the iteration limit

ment vectors (Fig. 3 b) indicate how the landslide occurs and the principal plastic strains (Fig. 3 c) reveal the shape
and location of the potential slip surface.

5 Conclusions

Slope stability analysis is performed using a visco-plastic computational model of the Element-Free Galerkin
method with the application of the shear strength reduction technique. The plane-strain state was used for the
analysis of homogeneous and isotropic dry soil slope. The results obtained by the proposed EFG model showed
that the FOS values determined are in agreement with the values found in the literature, giving reliability to the
method. The EFG model was able to represent the slip failure mechanism at the foot of the slope. The location
and shape of the potential slip surface were obtained naturally by the results of principal plastic strains or principal
plastic stresses.

The EFG model proved to be adequate in solving the problem that involves large displacements. For these
reasons, non-linear slope stability analysis using the EFG method offers real benefits over the classical LEM and
FEM methods.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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