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Abstract. This paper aims to present a positional unified PFEM formulation to solve problems of free surface
flows interacting with elastic structures. In contrast with traditional FEM formulations of fluid mechanics that
use velocities, here we use nodal position as the main variables for both solid and fluid. In addition, the same
solution scheme is used to solve the governing equations of both physical problems. In fact, the coupled problem
is treated as an unique spatial domain containing two different materials. For the solid, a hyperelastic Saint-Venant-
Kirchhoff model is adopted, which is suited for large displacement analysis within the small strain regime, while
the fluid is considered to have an incompressible-Newtonian behavior. A mixed position-pressure approximation
is adopted for the fluid domain to ensure incompressibility, together with a Pressure Stabilizing Petrov-Galerkin
(PSPG). The time marching procedure is performed by means of the second order alpha-generalized scheme. The
usage of a Lagrangian description naturally allows the simulation of deformable solids and free surface flows as
the movement of the mesh nodes coincides with the physical particles motion. However, free surface flows tend
to deteriorate the mesh quality as topological changes and several distortions of the fluid domain may occur. To
deal with that, the PFEM plays a key role by constantly regenerating the mesh and automatically detecting the
physical boundaries by combining an efficient Delaunay triangulation-alpha-shape procedure. The applicability of
the developed approach is demonstrated by the simulation of selected problems.
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1 Introduction

Fluid-Structure interaction (FSI) problems with free surface flows challenge the numerical methods as they
typically involve large distortions in the domain and could also present topological changes.

To overcome the limitations of using an Eulerian description with fixed mesh for the fluid, two main classes
of methods emerged: the interface tracking and interface capturing methods. In the first group, the mesh moves
to track the fluid-structure interface movement. As a consequence, the mesh can become too distorted if the
interface undergoes large displacements. The ALE description, introduced by Donea et al. [1] and the space-time
formulation, proposed by Tezduyar et al. [2], are examples of interface tracking methods. On the other hand,
the interface capturing methods are based generally on non-moving meshes, on which the free surface position is
determined by solving an additional advection equation. The contributions of the structure to the fluid problem are
then accounted for by means of Immersed Boundary techniques, as described by Peskin [3].

Alternatively, using a Lagrangian framework also for the fluid, the free surface shape is naturally known by
the particles or mesh nodes position. Furthermore, the coupling becomes simplified once the movement of both
domains are described using the same mathematical description. The difficulty is then transferred to a way of
keeping the mesh quality throughout the analysis.
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Thinking on that, Idelsohn et al. [4] and Oñate et al. [5] developed an innovative numerical method called
Particle Finite Element Method (PFEM). In the PFEM, the mesh is frequently reconstructed over a set of particles
by means of the Delaunay triangulation, and the physical boundary is identified using the geometric criteria α-
shape. Thanks to that, the method makes possible the simulation of really complex problems, such as free surface
flows (Idelsohn et al. [6]), melting solids (Onate et al. [7], Franci et al. [8]), soil excavation (Carbonell et al. [9])
among others.

2 Fluid dynamics problem

The equilibrium equation of an incompressible Newtonian flow is here obtained applying the Principle of
Stationary Potential Energy and integrating over the last known configuration Ωn, which reads:

∂Πh

∂xa
=

∫
Ωn

ρnẍ
hNadvn +

∫
Ωn

S′h :
∂Eh

∂xa
dvn +

∫
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phJhC−1h :
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−
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(1)
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∫
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(
Jh − 1

)
dvn = 0. (2)

In the above equations, xa, pa and Na is the vector of positions, the pressure and the shape function of a node a,
S′ is the deviatoric Piola-Kirchhoff stress tensor, E is the Green-Lagrange strain tensor, C−1 is the inverse of the
right Cauchy-Green tensor, J is the jacobian of the deformation gradient F, bn is the body forces, tn is the surface
traction and the superscript h indicates an interpolated variable. The positions and pressures are approximated
using equal-order linear shape functions.

The Piola-Kirchhoff stress tensor is written in terms of the Green-Lagrange strain rate as

S′ = Dn : Ė, (3)

where Ė is the Green-Lagrange strain rate and Dn represents the constitutive tensor related to the reference
configuration, given by

(Dr)ijkl = JF−1
ia F−1

jb F
−1
kc F

−1
ld Dabcd, (4)

with Dabcd standing for the constitutive tensor related to the current configuration, which is dependent of the
viscosity by the law:

D = µ (I⊗ I + I⊗ I) . (5)

When using equal-order interpolation for both position and pressure, it is necessary to stabilize the equation
(2) in order to obtain a good distribution for the pressure. For this purpose, we use the Pressure Stabilizing Petrov-
Galerkin (PSPG), proposed by Tezduyar [10], that adds to the incompressibility equation a term based on the
momentum residual scaled by the parameter τPSPG:
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aF−1hẍhdvn−∫
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(6)

The equations (1) and 6 are integrated in time using the α generalized method. For a more detailed explanation of
the formulation presented here, the readers should refer to Avancini and Sanches [11].

2.1 The Particle Finite Element Method

The key point in the PFEM is the mesh generation procedure, which combines the Delaunay triangulation
over the physical particles and the α-shape method. This last technique is used to erase those simplices that are
too distorted or too big based on a geometrical criteria. For each element e, we compare its circumradius re with
the initial mean mesh size he scaled by a α parameter. If the condition
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re > αhe, (7)

holds, the element is erased. By doing this, the external boundaries can be identified, and it allows even the
fragmentation of the domain, representing for instance, water drops. For more information about the PFEM, we
suggest the readers to refer to Idelsohn et al. [4], Franci [12] and Avancini [13].

3 Solid dynamics problem

Very similar to the fluid, the solid equilibrium is also obtained through the Principle of Stationary Potential
Energy, however, for compressible solids it is not necessary to split the internal energy, and the initial configuration
is adopted as the reference configuration. Thus, one writes:

∂Πh
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=
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Ω0
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∫
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−
∫
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(8)

Linear shape functions are used for the positions. In order to represent the material behavior, we use the Saint-
Venant-Kirchhoff hipereslatic model. It formulates a linear relation between the Piola Kirchhoff stress tensor and
the Green-Lagrange strain tensor as:

S = D : E, (9)

where the fourth order constitutive tensor D is given by

D = λI⊗ I + 2GII. (10)

In the equation above, λ is a material parameter known as Lame constant, ⊗ indicates the tensor product, G is the
transversal Young modulus and II is the fourth order identity tensor.

4 Monolithic coupling strategy

The coupling between the fluid and the structure is performed in a monolithic way, which means that both
domains are solved in an unique system of equations. Also, we assume that the meshes are conform at the interface,
or in other words, the fluid nodes must be coincident with the solid ones at the interface.

Bearing in mind that the interface nodes receive contribution from both fluid and solid elements to the posi-
tions degrees of freedom, and only from fluid elements to the pressure degrees of freedom, the system matrix can
be assembled as follows:

[M]f [M]f 0 [M]f [M]f

[M]f [M]f 0 [M]f [M]f

0 0 [M]s [M]s 0

[M]f [M]f [M]s [M]f + [M]s [M]f

[M]f [M]f 0 [M]f [M]f





∆xf

∆pf

∆xs

∆xfs

∆pfs


= −



rmf

rcf

rms

rmf + rms

rcf


, (11)

with the subscripts f , s e fs standing for a quantity related to the fluid domain, solid domain or to the fluid-
structure interface, ∆x and ∆p represent the increment of position and pressure, respectively, and lastly, rm and
rc are the residuals of momentum and incompressibility equations.

5 Numerical examples

Two numerical fluid-structure interaction problems are presented in this section. High complex phenomena
are involved in these problems, such as topological changes, wave breaking, hydrodynamic impact, fluid domain
separation and the formation of water drops. In both cases, a value of α = 1.2 is used for the α-shape method, and
the spectral radius is set to ρ∞ = 0.9.
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5.1 Dam break over an elastic obstacle

The first case is a benchmark of a dam break over an elastic obstacle, firstly proposed by Walhorn et al. [14].
The right wall is instantly removed at the beginning of the analysis, setting the water mass to flow and impact on
a flexible membrane which starts to oscillate. The initial geometry is depicted on Fig. 1, where L = 0.146 m,
D = 0.012 m and H = 0.08 m. The viscosity and density of the fluid were assumed equal to µ = 0.001 Pa·s and
ρf = 1000.0 kg/m3, while for the solid, a young modulus E = 106 Pa, poison ratio 0.0 and density ρs = 2500.0
kg/m3 were used. The gravity acceleration g = 9.81 m/s2 acts downwards only on the fluid domain and stick
conditions were applied on the rigid walls, so the normal and tangential components of displacements were set to
zero in a strong manner.

Figure 1. Dam break over an elastic obstacle. Initial geometry

The analysis was carried out using two different meshes. The coarser one has a characteristic length he =
0.004 m, 6154 fluid elements and 120 solid elements, while the finer mesh has he = 0.003 m, 10886 fluid elements
and 208 solid elements. The problem was simulated for a total of 1.0 s, with a time step ∆t = 0.001 s for both
meshes.

The horizontal displacement of the membrane’s tip was monitored and one can see a comparison to the
numerical results from Walhorn et al. [14] and Idelsohn et al. [15] in Fig. 2. For the first part of the analysis,
the results from both meshes agree well with the references, especially with Walhorn et al. [14]. After 0.5 s, the
structural response of all formulations starts to diverge. From this point, a series of complex phenomena, like
splashes and volume separation, can be observed and it highly affects the wave formation and consequently, the
time that the flow impacts the structure right side. These mechanisms seem to be dependents of the choice of the
α-shape parameter and the characteristic length of the mesh. Furthermore, the membrane’s flexibility plays a key
role in the second part of the analysis. In the case where the structure presents a smaller displacement peak value,
the fluid mass impacts on the right rigid wall at a taller point and with higher tangential velocity, thus delaying the
wave formation and the subsequent impact on the structure.
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Figure 2. Dam break over an elastic obstacle. Tip horizontal displacement

Figure 3 contains some snapshots of the free surface shape and the stress distribution over the deformed
structure using the finer mesh. Qualitatively, the results are in accordance with the physics of the problem, and one
can see that the formulation is capable of representing the complex events involved in this simulation: topological
changes in the fluid domain, water impact, breaking waves and large displacements.
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Figure 3. Dam break over an elastic obstacle. Snapshots of the free surface shape and structure stress distribution

5.2 Filling of a flexible container with viscous fluid

This example can be seen in the work of Franci [12] and consists of a highly flexible container being filled
with a viscous fluid that lays in a conic tank. The initial geometry is depicted in Fig. 4a, where B = 4.4714 m,
b = 1.3 m, h = 2.5 m, l = 3.75 m, t = 0.2 m e r = 2.25 m. Due to the impact of the fluid mass, the container
suffers a severe stretch and starts to oscillate, which in turn affects the fluid flow, thus presenting a strong coupling.
A case of a very viscous fluid with µ = 50.0 Pa·s and ρf = 1000.0 kg/m3 was considered, and the solid was
assumed to have E = 2.1 · 107 Pa, ν = 0.3 and ρs = 20.0 kg/m3. The gravity g = 9.81 m/s2 acts only on the
fluid, stick conditions were applied on the tank walls and the problem was simulated for 10.0 s using a time step
∆t = 0.001 s.

Two different meshes were used to discretize the domain: the first one has a size he = 0.1 m, 1007 fluid
elements and 568 solid elements, while the second one has a characteristic length he = 0.05 m with 7231 fluid
elements and 2646 solid elements. Firstly, the vertical displacement of the bottom of the elastic container was
monitored and compared to the reference. One can observe in Figure 4b a good agreement with the results from
Franci [12], especially during the first 3 s of analysis. After that, as mentioned in the previous example, a series of
events that are very sensitive to mesh refinement and to the α-shape parameter starts to affect the solution. Using
a coarser mesh implies in a less flexible structure, leading to a small amplitude oscillation. On the other hand, the
solution obtained with the finer mesh shows a higher amplitude of vibration. For both cases, the structure oscillates
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Figure 4. Filling of a flexible container with viscous fluid. (a) Initial geometry and (b) Vertical displacement of the
bottom of the elastic container

ten times during 10 s of simulation, which is in agreement with Franci [12]. Some snapshots of the free surface
shape and the stress field of the container can be seen in Figure 5. Again, one can observe that the results are in
accordance with the physics of the problem.
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Figure 5. Filling of a flexible container with viscous fluid. Snapshots of the free surface shape and stress field of
the structure

6 Conclusions

In this paper, an unified PFEM formulation based on positions was developed and two fluid-structure in-
teraction problems with free surface flow were presented. Due to the fact that we use the same variables, same
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description, and same solution scheme for both materials, the monolithic coupling strategy becomes straightfor-
ward to be implemented, and ended up being very robust for the simulation of strongly coupled problems. In fact,
one can simulate FSI problems just by summing the contributions for both materials at the interface degrees of
freedom during the system matrix assemble.

The results shown in this work also demonstrate the versatility and applicability of the PFEM. By combining
a robust Delaunay triangulation with the α-shape method to identify the external boundaries, it becomes possible
to handle very large domain distortions, topological changes and even domain separations, making it ideal for the
simulation of free surface flows.
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