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Abstract. The Smoothed Particle Hydrodynamics Method (SPH) is a Lagrangian numerical  method used to
solve engineering problems, notably on free surface flow. This article deals with numerical simulation using the
SPH method to  one-dimensional laminar flow on a free surface  in an infinite  channel.  The numerical  code
developed discretizes the fluid domain in particles with constant mass, which do not move during the simulation
and  only  present variation  in  their  velocity.  The  boundary  conditions  at  the  bottom  of  the  channel  were
implemented  using  ghost  particles  to  reflect  the  no-slip  condition.  Ghost  particles  with  corrections  are
implemented on the free surface to ensure that the shear stress on the free surface is zero. This correction ensures
that  the numerical  results  obtained in  the SPH method are  the closest  to the analytical  ones.  The transient
velocity profile was obtained by adopting the Eulerian framework in the SPH method and compared with the
analytical ones, showing agreement between the results.
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1 Introduction

Smoothed Particle Hydrodynamics (SPH) is a particle, Lagrangian, and meshless numerical method that
was originally created to simulate nonaxisymmetric phenomena in astrophysics [1][2]. 17 years later, the SPH
method was successfully applied to free surface flows [3], solving the propagation of the bore wave through a
dam break simulation. Since then, many free surface flows have been  solved with the SPH method, such as
hydraulic jumps [4], wave propagation and breaking [5][6], sloshing [7] and slamming [8].

Free  surface  flows in  hydrodynamics are  hard to simulate due to  difficulties  in  determining boundary
conditions. According to Colagrossi [9], despite the increasing diffusion of the SPH method, there is still a lack
of detailed description and theoretical analysis of the terms associated with the free surface. 

Therefore, this paper aims to apply the SPH method to a free surface laminar flow in an infinity channel.
The SPH model is a one-dimensional (1D) code based on the heat equation with imposed free surface boundary
condition. For the numerical model, the transient velocity profile is obtained and compared with the analytical
solution. It is shown that only with the correct free surface boundary condition the numerical velocity profile
agrees with the analytical results. 

2 Laminar flow on free surface

The 1D free surface laminar flow occurs in a channel with slope θ and infinite bottom in which a viscous
fluid flows with a low Reynolds number (Figure 1).

The application of the one dimensional code based on the Eulerian framework and on the Navier-Stokes
equations with free surface treatment for the flow in the  x direction, disregarding the pressure gradient  ∂p/∂x,
results in

∂V x

∂t
=ν

∂2V x

∂ y ²
 (1)
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where ν is the kinematic viscosity of the fluid [m2/s] and Vx is the linear velocity in the x direction [m/s]. The
boundary conditions of eq. (1) are Vx  (0, t) = 0 to reflect the no-slip condition, and the partial derivative ∂Vx/∂y
for (h, t) is equal to zero. The initial condition is Vx (y, 0) = 0.

Figure 1. Description of the Free Surface Laminar Flow

2.1 Analytical Solution Equation

The analytical solution for the free surface laminar flow problem is

V x ( y , t )=
−γ sinθ y
2 μ

( y −2H )+∑
n=1

∞

−
16 γ sinθH ²

(2n−1) ³π ³ μ
sen( (2n−1)π y

2H )exp[−ν( (2n−1)π
2H )

2

t] 

(2)

where γ is the fluid specific weight [kg/m³] and μ is the dynamic viscosity [kg/m.s].

3 Smoothed Particle Hydrodynamics Method 

In  this  section,  the SPH equations  applied to  the free  surface  laminar  flow in an  infinite  channel  are
presented.

3.1 Classical SPH equations

The classical SPH function, the integral interpolant, can be defined by

A1 (r )=∫ A (r ' )W (r −r ' , h)dr '  (3)

where h is the smoothing length and the integration is over the entire space, and W is the kernel function which
have to satisfy these two conditions

∫W (r −r ' , h)dr '=1 (4)

and

lim
h→0

W (r −r ' , h)dr '=δ (r −r ' ) (5)

where δ is the Dirac delta function, created by Paul Dirac in 1930 and often interpreted as unit impulse.
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The Dirac Delta function was replaced by a 1D cubic spline kernel, which is a scalar function, specified by

W (r ,h)= 2
3h {1−

3
2
q2+ 3

4
q3 if q<1

1
4

(2−q)3 if 1≤q<2

0 if q≥2

 (6)

with  h is the smoothing length and  q = rij/h is the relative distance between particles, following the notation
rij = |yi – yj|, where yi is the vertical position of the particle i and yj is the position of the neighboring particle j.

As suggested by Brookshaw [10] and Fatehi et al, 2011 [11], a SPH summation for the second derivative
present in eq.1 can be approximated as

(∂2V x

∂ y ² )i=∑
j≠ i

Nv

2
m j

ρ j

(V i−V j )
rij

( y i− y j )
rij

dW ij

dr
  (7)

where Nv is the number of neighbors of the particle that directly depends on the smoothing length (h) and that in
the analysis of particle i, only the neighbors particles are considered, being the particle itself disregarded.

3.2 Boundary Conditions

To simulate the boundary conditions ghost particles are created  outside of the fluid domain (0 ≤ y ≤ H),
above the free surface and below the channel. The velocities of the ghost particles created on the bottom of the
channel are called  Vp1,  and  Vp2 for velocities of the ghost particles  above to the free surface. To ensuring the
boundary conditions, the velocities of ghost particle at the bottom of the channel are calculated in terms of the
SPH method as

0=
∑ m jV xjW ( y j , h)/ ρ j

∑ m jW ( y i , h)/ ρ j

 (8)

where zero order correction is applied to the W kernel, or Shepard correction.
Attributing that the velocity of the ghost particles on the bottom of the channel are equal, Vp1  is

V p1(t )=
V ( x,1 )W (0.5 Δy ,h)+V ( x ,2 )W (1.5 Δy , h)

W (0.5 Δy ,h)+W (1.5 Δy ,h)
 (9)

where V(x,1) and V(x,2) are the velocities of the first and second real particles, respectively, and ∆y are the distance
between the fluid particles.

Also assuming that the velocities of all ghost particles above the free surface are equal and the derivative on
the free surface is zero, Vp2  is

V p2(t )=
V ( x, N )

dW
dr

(0.5 Δy ,h)+V (x , N−1 )
dW
dr

(1.5 Δy ,h)

dW
dr

(0.5 Δy ,h)+ dW
dr

(1.5 Δy ,h)
 (10)

where V(x,N) and V(x,N −1) are the velocities of the real particle closest to the free surface.

4 Computational Simulations

The input data used on the computational simulations of this article are described in this topic.

4.1 Fixed input data

For the computational simulations, was admitted an channel with infinite bottom and slope θ = 0,1745 rad
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(10º of bottom inclination) where a fluid flows with Reynolds equal to 1.

4.2 Particle distribution

The particles have been distributed in such a way that there are no particles exactly at the bottom of the
channel (y = 0) or on the free surface (y = H). So the first particle is at a distance ∆y/2 from the bottom of the
channel, just as the last particle (N) is at this same distance ∆y/2 below the free surface.

For the computational simulations, was admitted an infinite channel with a depth (H) equal to 0.6 m, in
which 25 particles were equidistantly distributed on the y axis, resulting in a spacing between the particles (∆y)
of 0.024 m (Figure 2).  The smoothing length (h) used was 0.0288 m, resulting in a total of 4 ghost particles
created, with two ghost particles located below the channel bottom and the same amount above the free surface
of the channel.

Figure 2. Description of particle distribution

5 Results and Discussions

After  establishing the input data of the model, the analysis were performed with the SPH method and
compared with the analytical solution for pre-established time points.

In order to make the axes of the graph dimensionless, the height of the particles in relation to the bottom of
the channel (y) were divided by the maximum channel depth (H) and the particle flow velocity (Vx) divided by
the average velocity (Vm). To also make the time dimensionless (t*), was applied the formula  t* = t  (g/H)0.5

(Figure 3).
From observing Fig. 3, the results obtained with the SPH Method have an agreement with the analytical

solution for the initial times. However, as the flow approaches the steady solution, it is noticed that the difference
between SPH and analytical solutions increases, especially the particles that are close to the free surface.

To alleviate this error in the SPH method, a second simulation was performed in which a correction was
applied to ensure that the integral in the compact domain of the particle, i.e. the corrected gradient W, is null,
resulting in a normalized kernel gradient (Figure 4).

Analyzing  Fig.  4,  it  is  noticed  a  better  agreement  between  the  SPH and  analytic  results  due  to  the
correctness of the kernel derivative. Even for particles that are close to the free surface, the method continues to
converge.
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Figure 3. The results obtained in the SPH method application in a free surface laminar flow for different time
steps.

Figure 4. The results obtained in the SPH method application in a free surface laminar flow with the kernel
derivative correction.

6 Conclusion

The transient velocity profile obtained with the SPH method and compared with the analytical ones showed
great  agreement between the results, mainly after the correction applied to the free surface. This demonstrates
the need and importance of the correction on the free surface to obtain a result closer to the real situation.

The non-treatment of the free surface causes an error during the unsteady regime and that may not be
noticed when analyzing only the steady state, as was done in the article written by Federico et al [4].
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