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Abstract. In the context of digital twins, and the integration of physics-based models with machine learning tools,
this paper proposes a new methodology for model selection and parameter identification, applied to nonlinear dy-
namic problems. Reinforcement learning is used for model selection through Thompson sampling, and parameter
identification is performed using approximate Bayesian computation (ABC). These two methods are applied to-
gether in a one degree-of-freedom nonlinear dynamic model. Experimental data are used in the analysis, and two
different nonlinear models are tested. The initial Beta distribution of each model is updated according to how
successful the model is at representing the reference data (reinforcement learning strategy). At the same time,
the prior Uniform distribution of the model parameters is also updated using a likelihood free strategy (ABC). In
the end, the models’ rewards and the posterior distribution of the parameters of each model are obtained. Several
analyses are made and the potential of the proposed methodology is discussed.
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1 Introduction

A Digital twin (DT) is more than a computational model. It is a framework that fuses important elements
aimed at supporting management decisions about a specific asset, such as sensing, data, computational model, and
learning [1, 2]. In this context, choosing the most appropriate model (given the experimental data) and taking into
account uncertainties are paramount. In addition, the combination of physics-based models with machine learning
tools can leverage the DT capabilities [2, 3]. The present paper integrates reinforcement learning (RL) for model
selection and approximate Bayesian computation (ABC) for parameter estimation in a nonlinear problem.

The problem considered is a forced nonlinear oscillator subjected to noise [4]. A Duffing-like model is
considered and the control-based continuation strategy [5, 6] is used to measure experimentally both stable and
unstable orbits.

RL is a machine learning technique where the learner must discover which actions yield the largest reward
by trying them [7]. We are particularly interested in selecting the most appropriate nonlinear dynamical model
given a set of experimental data, i.e. the one that better explains the data under analysis. We are inspired by the
multi-armed bandit problem [7] where an agent selects one over n different options. After each choice it receives
a reward depending on the selection made. It provides a trade-off between exploration (trying different arms) and
exploitation (playing the arm with best results).

ABC has been used for model selection and parameter estimation [8]. This Bayesian strategy is very conve-
nient because it is likelihood-free; hence, there is no need to construct a likelihood function. Here we use a similar
framework to [8]. The key difference is that we apply RL for the model selection instead of considering a Uniform
distribution to select the models.

ABC has been combined with RL in a control policy problem [9]. However, the application here and the way
we employ the techniques are different. Furthermore, we focus our analysis in the selection of the best nonlinear
dynamic model and, at the same time, update the probability density function of each model parameter given
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some experimental data. We propose to use Thompson sampling [10] (Beta-Bernoulli bandit) to help in selecting
the most appropriate model. Since the parameters of the model are not known, a prior Uniform distribution is
considered and the ABC strategy [8] is used to construct the posterior distribution for the parameters. We believe
that many applications might benefit from this new methodology since it provides a simple and efficient strategy
for model selection and parameter estimation of DTs.

The next section depicts the proposed methodology (RL and ABC) for model selection and parameter cali-
bration. Section 3 presents the nonlinear model analysed. The numerical results are shown in Section 4, and the
concluding remarks are made in the last section.

2 Methodology for model selection and parameter calibration

This section depicts the methodology proposed in this paper. First, the reinforcement learning for model
selection is discussed, then the ABC algorithm for parameter estimation is introduced. In the end of the section,
the proposed algorithm is presented.

2.1 Reinforcement learning – RL

A variation of the Thompson algorithm usually applied to multi-armed bandit problems is considered [10, 11].
We propose to use this strategy in the context of model selection [12]. Consider a Beta distribution for each model,

π(θ,M) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 , (1)

where α and β are the parameters of the Beta distribution with θ ∈ [0, 1]. The Bayesian framework is used to
update the Beta probability density functions (PDFs) over Bernoulli trials. Since Beta conjugates with Bernoulli,
for each new observation the parameters of the Beta distribution are updated according to

αnew = αold + r , βnew = βold + (1− r) , (2)

where r is the reward which is equal to one if the model is rewarded, and equals to zero otherwise. First, a sample
from each models’ distribution is generated (θk) with α = β = 2. The model corresponding to the highest value is
chosen, then its parameters are updated according to the reward. The model is rewarded depending on how close
its results are from the experimental data set. If it is close enough (see next section), then r = 1, otherwise r = 0.

In the beginning, the probability of choosing any of the models is the same. As the problem evolves, the
models with more rewards are more likely to be selected. Note that adding one to α moves the Beta distribution to
the right (closer to one), and adding one to β moves the Beta distribution to the left side.

2.2 Approximate Bayesian computation – ABC

The Bayesian approach has been widely used for statistic inverse problems [13]. In this approach, the param-
eters ϕ of modelM are treated as random variables, whose probability density function (pdf) is updated by means
of the Bayes formula

π(ϕ |y,M) =
π(y |ϕ,M)π(ϕ,M)

π(y,M)
, (3)

where ϕ is the vector composed of the parameters of model M, and y represents the data used in the learning
process. The terms shown in the equation are: the posterior PDF of ϕ, which is π(ϕ |y,M); the prior PDF
π(ϕ,M); the likelihood function π(y |ϕ,M); and the normalisation constant π(y,M). Usually an additive noise
is considered

y = ym(ϕ,M) + e , (4)

in which ym(·) represents the model prediction, and e is, for instance, a Gaussian added noise. From the additive
noise model, we can obtain the likelihood function

π(y |ϕ,M) = πe(y− ym(ϕ,M)) . (5)

Unfortunately, we do not know the structure of the error and, consequently, the likelihood function. To
circumvent this problem we apply the approximate Bayesian computation (ABC) [8], where instead of assuming a
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likelihood function we make a direct comparison of the model prediction (with parameter ϕ∗) and the experiment,
for instance

ρ(y,ym(ϕ∗,M)) =
||y− ym(ϕ∗,M)||2

||y||2
. (6)

To obtain the updated posterior PDF of parameters, a simple rejection method is considered [8].

2.3 Proposed algorithm

1 Sample from the Beta distributions (with parameters α and β) and choose the candidate modelM∗ with the
greatest θ;

2 Sample a candidate set of parameters ϕ∗ from π(ϕ|M∗);
3 Compute the prediction ym(ϕ∗);
4 Evaluate the results using the metric ρ(y,ym(ϕ∗)). AcceptM∗ and ϕ∗ if the error is lower than a threshold
ε, and set the reward r = 1. Otherwise, rejectM∗ and ϕ∗ and set r = 0.

5 Update the parameters of the Beta distribution of the modelM∗ according to the reward (α∗ = α∗ + r and
β∗ = β∗ + (1− r))

6 Go back to 1.

For the RL, initially we set α = β = 2, which yields a symmetric Beta distribution with mean equals to 1/2.
For ABC, we consider independent random Uniform random variables.

3 Nonlinear dynamical system

The model and experimental data considered here were taken from [4]. It consists of a Duffing-like oscillator
with the equation of motion

ẍ(t) + bẋ(t) + ω2
nx(t) + µx3(t) + νx5(t) + ρx7(t) = A cos(ωt) , (7)

where t is the time, ωn is the natural frequency of the system, b is the damping parameter, µ, ν and ρ are the
constants related to the nonlinear terms, A is the force amplitude, and ω is the forcing frequency.

The second model considered in this work is a simpler model, where ρ = 0:

ẍ(t) + bẋ(t) + ω2
nx(t) + µx3(t) + νx5(t) = A cos(ωt) , (8)

We want to know which one of these two models (Eqs. 7 or 8) is the best to represent a specific data set,
according to the proposed strategy. Even though the first model is more elaborated and might produce a lower
error, the strategy we employed takes into account other ingredients such as parameter uncertainties. The model
classification depends, for instance, on the prior distribution of the parameters and on the sensitivity of the response
with respect to them [14].

If we consider the non-dimensional time τ = ωnt, then d/dt = ωnd/dτ , and Eq. 7 becomes

x′′(τ) + b̂x′(τ) + x(τ) + µ̂x3(τ) + ν̂x5(τ) + ρ̂x7(τ) = δst cos(ζτ) , (9)

where ′ is the derivative with respect to τ , ζ = ω/ωn, b̂ = b/ωn, µ̂ = µ/ω2
n, ν̂ = ν/ω2

n, ρ̂ = ρ/ω2
n, and

δst = A/ω2
n. The steady-state periodic solutions of the oscillator can be obtained [4] by the method of multiple

scales [15]. This method provides an analytical expression for the forcing amplitude as a function of the amplitude
of the fundamental harmonic component of the steady-state solution X , thus providing an implicit representation
of the solution. For model 1, this expression of the forcing amplitude reads

ym1 =
|yAm1 × yBm1|

δst
, (10)
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in which

yAm1 =
(
(35/64)X7ρ̂+ (5/8)X5ν̂ + (3/4)X3µ̂−X(ζ2 − 1)

)
,

yBm1 =

(
(ζ2 − 1− (35/64)X6ρ̂− (5/8)X4ν̂ − (3/4)X2µ̂)2 + b̂2ζ2

(ζ2 − 1− (35/64)X6ρ̂− (5/8)X4ν̂ − (3/4)X2µ̂)2

)1/2

,
(11)

where the following property was used: cos(atan(ψ)) = 1/
√

1 + ψ2. For model 2, the analytical expression for
the forcing amplitude as a function of the amplitude of the fundamental harmonic component of the steady-state
solution X is obtained considering ρ = 0,

ym2 =
|yAm2 × yBm2|

δst
, (12)

in which

yAm2 =
(
(5/8)X5ν̂ + (3/4)X3µ̂−X(ζ2 − 1)

)
,

yBm2 =

(
(ζ2 − 1− (5/8)X4ν̂ − (3/4)X2µ̂)2 + b̂2ζ2

(ζ2 − 1− (5/8)X4ν̂ − (3/4)X2µ̂)2

)1/2

.
(13)

4 Numerical results

The simulated results must be compared with the available experiments. To this end, we take the experimental
data (red circles) shown in Fig. 1 (left), and consider a function with respect to X (the vibration amplitude). This
allows us to use least squares regression to fit a polynomial to the experimental data, which will be used to compute
the error between simulation and experiments. To respect the physics of the system, X must go to zero as the
amplitude of excitation A goes to zero, we solve

[X]p = ypoints , (14)

where p is the vector composed of the polynomial coefficients to be found, ypoints = [A1 ... An]T is the vector
with the n experimental points. To fit a seventh-order polynomial that passes through the origin, the Vander-
monde matrix [X] is constructed suppressing the first column with one in each entry. Applying the least squares
approximation, p = ([X]T [X])−1[X]Typoints, the function obtained is given by:

yexp = 0.53X − 4.72X2 + 16.11X3 − 26.49X4 + 22.18X5 − 10.02X6 + 3.11X7 . (15)

Figure 1 (right) shows the results of models 1 and 2, using the identified parameters, together with the ex-
perimental data. Both models are able to reproduce the main characteristic of the system, although the shape they
produce are a little different. Model 1 presents a lower error (0.17%) compared with model 2 (0.80%).

Figure 2 shows the prior and posterior PDF of the parameters for the two models analysed. The initial
Uniform distribution is updated after the calibration process. The cubic parameter µ is the one that gained the
most information in model 1, in the sense that its final distribution is dissimilar to the Uniform one. For model
2, the parameter ν also gained considerable information, and it can be seen that it is less likely to return lower
values, in the range analysed. The set of parameters that yields the lower error, comparing with the experiment, is
µ1 = 0.423, ν1 = −0.105, ρ1 = 0.011 and b1 = 0.002 for model 1 and µ2 = 0.423, ν2 = −0.093 and b2 = 0.008
for model 2.

Figure 3 shows that there is a negative correlation between parameters µ and ν for model 1 (−0.65) and
model 2 (−0.56). As µ increases, ν decreases. Note also that the values of µ are a little greater for model 2, which
compensates the fact that it considers ρ = 0.
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Figure 1. Left: experimental data (red circles) and polyfit function obtained via least squares. Right: comparison
of the simulations with the experimental data. The black continuous and dashed lines are the results of models 1
and 2 obtained with the identified parameters.
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Figure 2. Prior and posterior probability density functions (pdf) of the parameters of models 1 and 2. The parame-
ters µ, ν and b appear in both models (µx3 + νx5 + bx′), but only model 1 has ρ (related to ρx7).

Figure 4 shows the 95% probabilistic envelope considering the calibrated models (posterior distributions),
together with the experiments. The stochastic model encompasses the available experiments. However, the prob-
abilistic envelopes of the two models are quite different for high amplitudes of excitation. For both models, the
probabilistic envelope is very thin if the amplitude of the excitation is small. Up to V = 0.5V/s2, the non-linearity
is not activated; remember that the uncertain parameters are related to the nonlinear part of the equation (cubic,
5th-order, and 7th-order terms). As the amplitude of excitation increases the envelopes get wider.

Figure 5 shows the reward attributed to each model and their prior/posterior Beta PDFs. After each simulation,
a reward (0 or 1) is given for the model that was chosen. It can be seen that model 2 is the first one selected, and it
is positively rewarded, but, as the simulations evolve, model 1 outperforms model 2, considering: (i) the available
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Figure 3. Correlation between parameters µ and ν: model 1 (left) and model 2 (right).
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Figure 4. Experiments (red circles) together with the probability envelope of model 1 (left) and model 2 (right).
The black continuous line represents the percentiles of 2.5 and 97.5% and the dashed line is the mean.

experiments, (ii) the interval of the parameters, and (iii) the value of the threshold ε. Figure 5 (right) shows the
initial Beta PDF with α = 2 and β = 2. The updated PDFs are thinner with mean greater than 50%. For model
1 the parameter values reach α1 = 237 and β1 = 177 (model 1) and α2 = 158 and β2 = 136 (model 2). The
conclusion is that both models are very good to explain the experiment analysed.
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Figure 5. Left: reward attributed to each model along the 700 simulations. Right: prior and posterior Beta
distribution for each model.
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5 Concluding remarks

This paper proposes a methodology to simultaneously calibrate the parameters and select models to match
experimental data using approximate Bayesian computation (ABC) to update the prior distribution over the model
parameters, and reinforcement learning (RL) to select models. It was applied to a nonlinear Duffing-like system.
A model that considers the cubic, 5th and 7th-order terms is compared with another that disregards the 7th-order
term.

The results show that the strategy seems to work properly. It was successful in selecting the best model and
updating the PDFs of the parameters. The parameters related to the cubic and 5th-order terms are the ones that
gained more information in the process, while the PDFs of the damping and the 7th-order term parameter remained
close to the Uniform distribution. In addition, the cubic and the 5th-order term parameter presented some negative
correlation. The next steps of this investigation are to consider (i) time dependent parameters and (ii) a more
efficient ABC strategy (e.g. MCMC).
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