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Abstract. For the robust design of piezoelectric energy harvesting devices, it is necessary to estimate the mean
and variance of the harvesting performance due to uncertainties in device parameters. This is done here using
Polynomial Chaos Expansions (PCE). Aiming at overcoming the total computational cost required for the robust
optimization, a discussion on the selection of the most relevant uncertain parameters and on the degree and con-
vergence of the PCE is performed. Then, with a satisfactory modeling choice, a multi-objective optimization using
Non-dominated Sorting Genetic Algorithm (NSGA-II) is performed to determine Pareto fronts and box-plots that
allow to choose the harvesting devices with better compromise between performance mean and dispersion.
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1 Introduction

Alternative energy sources have been studied in response to the high demand for energy in recent years. In
this sense, electrical energy can be harvested from mechanical vibrations using resonant devices with piezoelectric
elements that convert strain energy into electrical energy and electrical circuits that harvest and store this energy
for later use in different applications. Figure 1 shows a typical resonant piezoelectric energy harvesting device
in which an applied harmonic displacement w0(t) at the clamp induces vibration and, thus, deformation of the
cantilever beam and piezoelectric patch. The tip mass mb is used to tune the resonance frequency of the device
with the base excitation frequency, producing the resonance phenomenon and maximizing the energy harvested.
The piezoelectric patch is coupled to the beam through an adhesive layer and connected to an electrical resistance
Rc, which is used as a proxy of the real harvesting circuit to estimate the energy available to be harvested.

Due to the small amount of energy typically available for conversion, it is important that the design of de-
vices include an optimization process to maximize the energy harvested [1]. Optimization methods seek to find
the parameters which minimize/maximize certain functions subject to equality or inequality constraints. They
can be classified in mathematical programming and modern or non-traditional techniques, such as meta-heuristic
methods [2]. Unlike mathematical programming methods based on differential calculus, meta-heuristics methods
are generally less susceptible to initial guesses and local optima and do not require continuous or differentiable
objective functions. They are also particularly useful for problems requiring a multi-objective optimization.

Although optimization methods can be used to design energy harvesting devices with optimal nominal per-
formance, it is also important to consider the effect of uncertainties in device parameters and/or in the environ-
ment [3]. In this vein, optimization under uncertainties such as robust design optimization (RDO) seeks to find
solutions that are less sensitive to relevant sources of variability [4]. The mean and variance functions are inter-
esting alternatives to estimate the variability or robustness of a solution in robust design optimization. Different
possibilities for the estimation of mean and variance have been presented such as Monte Carlo Simulation, Taylor
series, Karhunen–Loève and Polynomial Chaos Expansions [4, 5].

After estimating mean and variance, they can be considered as competing objective functions in multi-
objective optimization. For the energy harvesting problem, for instance, the mean performance, or mean energy
harvested, must be maximized and its dispersion or variability must be minimized at the same time. Multi-objective
optimization methods converge to a set of many solutions which are usually shown in a plot known as Pareto front,
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unlike the optimization of a single function which returns one optimal solution [6]. The Pareto front can distin-
guish the type of problem studied as convex or non-convex where one goal for each solution cannot be improved
without worsening another goal. In particular, a multi-objective method known as Non-dominated Sorting Genetic
Algorithm (NSGA-II) find many solutions in a Pareto front by choosing the individuals in each run of the simula-
tion that best represent the front [7]. Then, the analyst may check the solutions found and, based on any subjective
criteria, choose an appropriate solution for the particular problem.

In this work, an energy harvesting device with uncertainties in certain parameters is modeled using the finite
element method and a harmonic displacement is applied to the clamp to induce vibrations and, thus, harvested
energy. Using the frequency response function (FRF) of electric power output, the mean and the variance are
estimated using Polynomial Chaos Expansions. Then, the NSGA-II multi-objective optimization method is used to
find the best device designs that simultaneously maximize the mean harvested energy and minimize its dispersion.
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Figure 1. Typical model of energy harvesting devices
based on resonating cantilever beams.
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Figure 2. Schematic representation of the energy
harvesting resonant device with imperfect clamp.

2 Finite element model of a piezoelectric energy harvesting device

The finite element model for the energy harvesting device is based on [8]. The model consists of three
layers, two external or face layers that represent the host beam (substrate) and the piezoelectric patch, following
Bernoulli-Euler beam theory, and one core or central layer that represent the adhesive (bonding) layer between
substrate and patch, modeled using Timoshenko beam theory to allow expected shear strains. The piezoelectric
material is considered orthotropic and entirely covered by electrodes. Figure 2 presents the device considered here
to evaluate the harvested energy accounting for an imperfect clamp simulated by linear kw and torsional kθ springs.
The geometric properties are summarized as follows: beam length lv and height hv , piezoelectric length lp and
height hp, tip mass length lb and height hb and distance between piezoelectric patch and clamp dp. A harmonic
displacement w0(t) is applied to the clamp causing vibrations and the harvestable energy is estimated through the
power dissipated in the equivalent electrical resistance Rc. The equations of motion are written as

Mrrür + Krrur − K̄meqc = m?ẅ0(t), (1)

Rcq̇c − K̄t
meur + K̄eqc = 0, (2)

where Mrr, Krr, K̄me and K̄e are matrices of mass and mechanical, piezoelectric and dielectric stiffnesses,
respectively. ur is a vector of displacements relative to the base displacement, w0(t) = w̃0e

iωt, qc is the electrical
charge induced in the piezoelectric patch and m? is a column vector with mass elements. The model is reduced by
projecting onto a truncated modal basis such that ur ≈ φαr, in which the modal basis φ is obtained by solving
the undamped eigenvalue problem [−ω2Mrr + Krr]φ = 0. By also considering a modal damping matrix Λ, (1)
and (2) are rewritten as

(−Iω2 + j2ωΛΩ + Ω2)α̃r −Kpq̃c = φtm?(−ω2w̃0), (3)

(jωRc + K̄e)q̃c −Kt
pα̃r = 0, (4)

where I = φtMrrφ, Ω2 = φtKrrφ and Kp = φtKme. α̃r and q̃c are the modal displacements and circuit
electric charges, respectively. Considering the relations between voltage, current and charges in the circuit, such
that Vc = Rcic and ic = q̇c, it is possible to define the FRF of voltage output per unit base acceleration as follows

GV ẅ0
(ω) = jωRcK

t
pD
−1φtm?, (5)

where D = (jωRc+K̄e)(−Iω2 +j2ωΛΩ+Ω2)−KpK
t
p. Similarly, defining the power dissipated in the resistive

circuit as P = V 2
c /Rc, the FRF of power output per unit squared base acceleration GPẅ0

(ω) is written as

GPẅ0
(ω) = (GV ẅ0

(ω))2/Rc. (6)
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The latter (6) will be used as performance metric to design devices, targeting both maximization of the mean
harvested power and minimization of its dispersion. For that, it is necessary to estimate its mean and variance,
which will be later used in a multi-objective optimization.

3 Mean and variance estimation

For a computational modelM with random input vector X, the random response is defined as Y ≡ M(X).
The Polynomial Chaos Expansions (PCE) allows to estimate the quantity of interest Y using [9]

Y ≡M(X) =
∑
%∈NM

c%Ψ%(X), (7)

where c% and Ψ%(X) are deterministic coefficients and multivariate orthonormal polynomials, respectively, as-
sociated with the multi-index %. Details for finding the multi-index, which is a list of integers with the sum of
terms inferior or equal to the polynomial degree, can be found in [9]. Then, the multi-index notation is defined as
% = (%1, %2, · · · , %M ), %i ∈ N, withM random variables in the computational model. By means of the multi-index
%, the multivariate polynomial is defined as

Ψ%(x)
def
=

M∏
i=1

ψ(i)
%i (xi), (8)

where ψ(i)
%i is the univariate polynomial associated with the integer %i. The probability density function of each

random variable Xi determines the corresponding univariate polynomial such as Hermite, Legendre and Laguerre
polynomials for normal, uniform and gamma variables, respectively. It is also important to use the standardized
random variable Xi to compute multivariate polynomials.

The length of a multi-index % corresponds to the total degree of the multivariate polynomial, defined as

% ≡ ‖%‖1 = %1 + %2 + · · · %M . (9)

The sum of terms of (9) is limited to the degree of polynomial chosen according to the set AM,p = {% ∈
NM : |%| ≤ p}, allowing to truncate (7) so that

Y ≡M(X) ≈
∑
%∈A

c%Ψ%(X). (10)

The cardinality of the set A = AM,p determines the number of terms in (10), which can be found according
to [9]. Next, the coefficients can be calculated using the least-square minimization by considering the argument
that minimizes the mean square error between the computational model and the truncated polynomial. For this
purpose, a drawing of random sample X = {x(i), i = 1, · · · , n} is performed using Monte Carlo Simulation
(MCS), Latin Hypercube Sampling (LHS) and quasi-random sequence via Halton or Sobol methods for sampling.
Thus, the sampled model responses are

Y = {y(1) =M(x(1)), · · · ,y(n) =M(x(n))}T . (11)

The polynomial bases are used to determine the following set

A = {Aij
def
= Ψj(x

(i)), i = 1, 2, · · · , n, j = 1, 2, · · · , card(A)}. (12)

where card(A) is the cardinality of set A. Then, the coefficients of the expansion are evaluated from

ĉ = (ATA)−1ATY. (13)

The mean and variance of the computational model response is estimated from the coefficients of the PCE as

µŶ = E[Ŷ ] = E[
∑
%∈A

ĉ%Ψ%(X)] = ĉ0, (14)

σ2
Ŷ

def
= Var[Ŷ ] = E

[
(Ŷ − ĉ0)2

]
=

∑
%∈A
%6=0

ĉ2%. (15)
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For instance, (14) and (15) can be used to estimate the mean and variance of the response of power output
according to (6) for given distributions and realizations of the uncertain input parameters and values of the other
model parameters considered as deterministic. These estimations are then used as objective functions in a multi-
objective optimization strategy.

4 Robust optimization using NSGA-II

The Non-dominated Sorting Genetic Algorithm (NSGA-II) is a method based on the classical genetic algo-
rithm to solve problems with different objective functions simultaneously. For this reason, a population of points in
each run of the algorithm is chosen in order to converge towards the Pareto front. In the convergence procedure, the
method seeks multiple non-dominated solutions assigning fitness to the population members and trying to ensure
the diversity of points in the final solutions [7].

In the genetic algorithm (GA), the convergence process is divided into stages of reproduction, crossover and
mutation based on biological evolution concepts [2]. The variables are manipulated using individuals and a fitness
function is evaluated to select the best individuals. By means of probabilistic concepts, the best individuals are
selected at the reproduction stage and copies are created to form the mating pool. After this stage, part of the
population from the mating pool is chosen and the crossover operator is applied by combining portions of the
individuals aiming at producing offspring individuals with better fitness (objective function) values. Finally, the
mutation operator is implemented by modifying certain characteristics (properties) of the individuals according
to a specified probability. These steps are repeated for a number of generations (iterations) to find the optimal
characteristics (design variables) that minimize or maximize a specific objective function.

The stages presented in the genetic algorithm are used in the NSGA-II to find non-dominated solutions and to
ensure the diversity in the population. Thus, the first procedure is to rank the individuals by dividing the solutions
in fronts or ranks, which are chosen according to the dominance concept. For instance, a hypothetical population
can divided in rank 1, rank 2 and rank 3 so that the individuals of rank1 are closer to the optimum Pareto front and
should be preferred in the non-dominance procedure. Then, for individuals in the same rank, the diversity of the
population is preserved by considering solutions in a less crowded area with the help of an operator that measures
the crowding distance.

The initial population with N individuals in NSGA-II is ranked and the operators of reproduction, crossover
and mutation are applied to create an offspring population. The new population, which consists of 2N individuals,
are sorted according to the dominance concept in the best ranks. Also, the crowding distance operator is applied
to the individuals in the same rank. Hence, the population is truncated and the best solutions of N individuals are
separated, ending the iteration. This process is repeated in order to find the Pareto-optimal solutions based on the
number of iterations determined by the end-user.

5 Procedure for designing robust energy harvesting devices

The design strategy for robust energy harvesting devices consists of: i) defining the design and uncertain
variables; ii) estimating the mean and variance of the power output FRF; and iii) applying the multi-objective
optimization method. This procedure aims to maximize the mean and minimize the dispersion of the power output
(6) using the PCE method by (14) and (15).

First, the beam length and electrical resistance are chosen as design variables and stored in the vector xd =
{lv, Rc} (Figure 2). Then, the uncertain variables are chosen as the linear kw and torsional kθ clamping springs,
electrical resistance Rc, effective damping ζ of the device, and height hc and Young’s Modulus Ec of the adhesive
layer. These variables are stored in the vector xu = {kw, kθ, ζ, Rc, hc, Ec}. For all uncertain variables, the
Gamma probability distribution function is considered with shape parameter α = (µ/σ)2 = 1/δ2 and scale
parameter β = σ2/µ = µδ2, where µ, σ and δ state, respectively, as the mean, standard deviation and relative
dispersion. These being defined for each uncertain variable, it is possible to evaluate the corresponding parameters
α and β and, thus, generate samples (realizations) of each variable following the chosen distribution. For all other
model input parameters, that are not design or uncertain variables, fixed nominal (deterministic) values are set.

Since the main purpose of the energy harvesting device design optimization is to maximize the harvested
power output, the device resonance frequency must be tuned to the excitation frequency. This is done by internally
evaluating the tip mass, through its height hb, for a given set of device parameters so that the resonance frequency
matches the pre-defined target frequency. Particularly, the FRF of power output indicated by (6) is evaluated for
given vectors of design variables xp, uncertain variables xu and excitation frequency ωe such that

f(xp,xu) = GPẅ0
(xp,xu, ωe). (16)
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Before applying the multi-objective optimization method, reference values for the mean µref and standard de-
viation σref are estimated by Monte Carlo Simulation with a larger number of samples for a particular set of design
variables. This is done to enable the convergence verification of mean and dispersion estimation and corresponding
selection of the minimum number of samples required for satisfactory convergence.

Then, the smaller number of samples is used to verify which uncertain variables have the most influence on
the output dispersion. For that, the mean µf and dispersion δf power output (16) are estimated via MCS when
eliminating one uncertain variable at a time. This is done by set the nominal value to that variable while others
are sampled. The mean and dispersion estimations are then compared to the reference value, obtained when all
uncertain variables are sampled. For instance, the mean and dispersion ignoring the uncertain variable kw are
denoted as µk̄w and δk̄w . Whenever an uncertain variable has smaller influence on the mean and dispersion, the
PCE method may be applied with a smaller number of uncertain variables, which helps improving convergence
and reducing the computational cost of the optimization.

For a given design solution, represented by its corresponding design variables xd = {lv, Rc}, and sampling
N realizations of the uncertain variables xu = {kw, kθ, ζ, Rc, hc, Ec}, it is possible to evaluate the corresponding
realizations of the objective function f(xd,xu) and, thus, to estimate its mean and standard deviation. Alterna-
tively, the Latin Hypercube Sampling (LHS) is used with MCS to improve the sampling process by dividing every
variable into subsets with equal probability and selecting only one sample in each stratum [10].

After choosing the most relevant uncertain variables in vector xu, the PCE with different degrees is used to
estimate the mean and variance for the particular design variables with various number of samples. This is done
to assess the minimum degree and number of samples for the PCE that yield a satisfactorily small error relative to
the MCS reference estimations. To compute the PCE coefficients, the samples of uncertain variables in (11) are
obtained with a quasi-random sequence using the Halton procedure based on [11]. Then, with the chosen degree
and number of samples of the PCE to well estimate the mean and variance of the power output (16), these are
used in the NSGA-II procedure to obtain the optimal solutions subjected to predefined choices for the number of
individuals and iterations and lower and upper bounds for each design variable xLd ≤ xd ≤ xUd .

6 Results and discussion

Experimental results for an energy harvesting device laboratory setup were used to verify and update the finite
element model and its corresponding nominal parameters. The geometric properties of the experimental device are
summarized as follows (according to Figure 2): lv = 74.7 mm, lp = 73. mm, lb = hb = 12.8 mm, hp = 0.13 mm,
dp = 1.1 mm and 12.8 mm of width for all parts. The tip mass is on top of a segment of the substrate, thus the total
mass is estimated at 9.2 g and rotation inertia at 0.8 kg mm2. A PZT-5A piezoceramic was considered with elastic
stiffness constant c̄E11 = 66.3 GPa, piezoelectric constant ē31 = 13.3 C/m2 and dielectric constant ε̄ε33 = 12.3 nF/m
and density 7850 kg m−3. For the substrate, aluminum was considered with Young’s modulus 68 GPa and density
2700 kg m−3. The Epoxy-based 3M Scotch-Weld DP-460 adhesive layer has Young’s modulus 2 GPa and density
1126 kg m−3. The damping factor of ζ = 1.1% identified in experimental tests was also used in the numerical
model. By using different electrical resistance values, numerical and experimental FRFs of voltage induced at the
piezoelectric patch electrode and transverse acceleration output at tip mass were evaluated.
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Figure 3. Convergence of MCS dispersion estimation.

Table 1. Output power mean µ and relative dispersion δ
estimation removing one uncertain variable at a time.

[mW/g2] er(%) [%] er(%)

µk̄w 42.52 1.3 δk̄w 8.66 14.7
µk̄θ 42.63 1.6 δk̄θ 8.23 18.9
µζ̄ 41.88 0.2 δζ̄ 9.48 6.6
µR̄c 42.03 0.1 δR̄c 10.04 1.0
µĒc 43.38 0.3 δĒc 9.76 3.8
µh̄c 42.09 3.3 δh̄c 7.50 26.1

The uncertain variables are defined with mean value and relative dispersions, making it possible to determine
the shape and scale parameters for the Gamma distributions. First, the mean and variance of power output (16)
were estimated with MCS for the case with lv = 75 mm and Rc = 100 kΩ while previously defined values were
kept for the other parameters. The mean (nominal) values and relative dispersions of the uncertain parameters
are summarized as: kw = 50 kN/m (δkw = 30%), kθ = 0.3 kNm/rad (δkθ = 30%), ζ = 1.1% (δζ = 10/3%),
Rc = 100 kΩ (δRc = 10%), hc = 0.08 mm (δhc = 10%), Ec = 2.0 GPa (δEc = 50/3%). Thus, the reference
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values for the mean and dispersion estimated using MCS with 106 samples were µref = 41.964 mW/g2 and
δref = σref/µref = 10.155%. Then, the convergence of dispersion estimation using MCS and MCS/LHS was
verified and plotted in Figure 3. It indicates that 4000 samples should be accurate enough for both MCS and
MCS/LHS methods.

Thus, this number of samples were used to evaluate the mean and dispersion excluding one variable at a time.
These are given in Table 1 together with the relative error er with respect to the reference values µref and δref. While
the error in estimation of the mean values is small in all cases, the error for the dispersion is much more important.
From Table 1, one may conclude that the circuit resistance Rc and adhesive modulus Ec are the least important
uncertain variables and, thus, could be removed from the set of uncertain variables, which was then reduced to
xu = {kw, kθ, ζ, hc}, noticing that Rc is still kept as one of the design variables.

In order to choose an adequate number of samples for the PCE with Halton sequence, the MCS was first
applied with 104 samples for vector the xu = {kw, kθ, ζ, hc}. The power output mean and relative dispersion
resulted in 42.17 mW/g2 and 9.62%, respectively, for the design variables set xd = {75 mm, 100 kΩ} . Using
these values as reference, the convergence in dispersion estimation of PCE with three different polynomial degrees
was assessed and is shown in Figure 4. It indicates that a PCE of degree 3 converges faster to satisfactory error
levels and, thus, a PCE-3 with 400 samples was chosen to estimate mean and dispersion in the multi-objective
optimization with NSGA-II.
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Figure 4. Convergence of PCE dispersion estimation.

Table 2. Design variables, µ and δ using NSGA-II.

Device
lv

(mm)
hb

(mm)
Rc

(kΩ)
µY

(mW/g2)
δY
(%)

1 65.0 18.6 66.9 57.7 9.10
2 65.0 18.5 53.4 57.5 8.77
3 65.8 17.9 48.4 56.2 8.64
4 67.1 16.9 43.8 54.0 8.48
5 69.4 15.5 48.3 50.9 8.23
6 71.5 14.2 44.0 47.9 7.99
7 73.1 13.3 42.2 45.8 7.84
8 75.9 11.9 41.1 42.5 7.60
9 79.1 10.5 40.7 39.0 7.37

10 84.2 8.5 36.7 34.4 7.08
11 85.0 8.3 36.7 33.7 7.04
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Figure 6. 4σ box-plot of harvested power.

Considering the lower and upper bounds of 65 mm ≤ lv ≤ 85 mm and 20 kΩ ≤ Rc ≤ 400 kΩ for design
variables, the NSGA-II multi-objective technique combined to a PCE of degree 3 (PCE-3) for the estimation of
power output mean and dispersion was used to evaluate optimal solutions for a robust design. Figure 5 shows the
Pareto front for the two objectives, mean harvested power (to be maximized) and its dispersion (to be minimized),
found when applying NSGA-II with PCE-3. 30 individuals and 300 iterations were chosen leading to the devices
that converged to the Pareto front shown in Figure 5.

Some selected devices, represented by crosses in Figure 5, and their corresponding performances are shown
in Table 2. The first selected device has better performance (higher mean) while the last one is more robust (lower
dispersion). It is noticeable that devices with shorter lengths, and hence larger tip masses, provide greater mean
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harvested power while devices with greater lengths are more robust. Figure 6 presents a box-plot with a confidence
interval of ±2σ for the harvested power for the devices listed in Table 2. It may be helpful to compare the robust
performance of the selected devices. For instance, it suggests that device 2 is better than device 1 since the worst
case performance (lower-bound) is higher for device 2 while the mean performance is only marginally smaller.
This occurs mainly by decreasing the electrical resistance, while the other parameters are nearly the same, as
presented in Table 2. Other devices can be compared in terms of best and worst case performances using both
box-plot and Pareto front and according to a subjective analysis to select an appropriate device.

7 Conclusions

This work has presented an analysis of the robust design of piezoelectric energy harvesting devices consider-
ing parametric uncertainties in the cantilever clamping, circuit resistance, damping factor, and adhesive thickness
and modulus. A discussion on the selection of the most relevant uncertain parameters and on the degree and con-
vergence of a Polynomial Chaos Expansion to estimate the harvested power mean and dispersion was performed.
It was shown that the adhesive layer thickness and clamping stiffness are the most relevant uncertain parameters.
Then, a multi-objective optimization using Non-dominated Sorting Genetic Algorithm (NSGA-II) was performed
to determine Pareto fronts and box-plots that allow to choose the harvesting devices with better compromise be-
tween performance mean and dispersion. Results show that generally harvesting devices with larger tip masses
lead to greater mean performance but also larger dispersion and, thus, are less robust. It was also observed that the
robustness may be increased by reducing the effective resistance of the harvesting circuit.

Acknowledgements. Financial support of CNPq, through grants 309193/2014-1 and 309001/2018-8, and CAPES,
through a doctoral scholarship, is gratefully acknowledged.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References
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[11] M. Kolář and S. F. O’Shea. Fast, portable, and reliable algorithm for the calculation of halton numbers.
Computers & Mathematics with Applications, vol. 25, n. 7, pp. 3–13, 1993.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021


	Introduction
	Finite element model of a piezoelectric energy harvesting device
	Mean and variance estimation
	Robust optimization using NSGA-II
	Procedure for designing robust energy harvesting devices
	Results and discussion
	Conclusions

