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Abstract. The combination of surrogate models with structural reliability methods has helped to reduce com-
putational demands, allowing to perform reliability analysis of more complex problems, such as those related to
redundant systems. When surrogate models are employed, the actual value of the limit state function is usually
necessary for the construction of the surrogate. Then, for all simulations, the load must be incremented until Plim,
when failure of the system occurs, increasing the computational costs associated to the mechanical model evalu-
ations. If the simulation is stopped before reaching Plim, there is a loss of accuracy in the evaluation of the limit
state function, which may lead to less accurate surrogate models and, consequently, errors in the estimated failure
probabilities. This paper aims to investigate when the simulation may be stopped without significant losses in
the accuracy of the surrogate model. Failure probabilities and computational costs are compared for a number of
structural reliability problems from the literature. For the examples presented herein, results have shown that when
the load factor is larger than 1.1, the metamodel may be capable to estimate the failure probability, although it can
be necessary more limit state function evaluations to achieve the convergence.

Keywords: Structural system reliability analysis, Redundant systems, Global structural response, Active learning
Kriging

1 Introduction

The estimation of systems failure probability involves modeling the structural system and identify the domi-
nant failure modes having more influence on the failure probability, generally represented by event trees (Srividya
et al. [1]). However, if a structural model is built and adequately represents the structural response, failure of the
system can be characterized considering the global structural response, as presented by Gomes et al. [2]. Global
structural responses are usually obtained by employing mechanical models capable of dealing with material and
geometric nonlinearities. When dealing with engineering practice, many evaluations of these models are required
to solve the corresponding reliability problems, which may result in considerable computational efforts.

In the last few years, the search for efficient procedures to reduce the computational demands has resulted in
several approaches such as Subset Simulation (Au et al. [3], Papadopoulos et al. [4]) and the Weighted Average
Simulation Method (Rashki et al. [5], Okasha [6]). Moreover, the use of surrogate models, including neural
networks (Chojaczyk et al. [7], Gomes [8], Gomes [9]) and response surface (Roussouly et al. [10], Jiang et al
[11]), have been shown promising results for many decades. In this situation, the mechanical model can be replaced
by a less demanding surrogate model. Once the accuracy of the surrogate response is related to the sample point
used to build the model, active learning methods have largely been applied to combine Kriging and reliability
methods, due to the ability of Kriging to provide not only prediction but also their variance (Echard et al. [15],
Xiao et al. [16], Yuan et al. [13] Kroetz et al. [14], Yi et al. [12]).

However, when using reliability methods as Monte Carlo simulation (MCS), for example, for each sample i,
the load is incrementally applied until the value associated with this sample, Pi, is achieved, or until the limit load
of the structure, Plim, is reached. The signal of the limit state function is used to determine if the sample is on
the failure domain or not. For the small failure probabilities usually found in practice, only a few simulations are
performed until Plim is reached. On the other hand, when surrogate models are employed, the actual value of the
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limit state function is necessary to build the surrogate to obtain accurate results, avoiding errors in the estimated
failure probabilities. The aim of this paper is to verify the loss of accuracy in the estimated failure probability when
the response of the mechanical model is obtained before failure is reached for samples located on safe domain.
To do so, the maximum load to be applied in each simulation is given as the minimum between αPi, where Pi
is the load associated with each sample i, and Plim, considering different values of α. The reliability analysis is
performed combining Kriging and Monte Carlo simulation, and a recently developed active learning function is
used to choose the sample points necessary to build the surrogate model. The limit state function is formulated
considering the global structural response, obtained from a mechanical model capable to represent the redundancy
of the structural system as well the dependencies between failure modes.

2 Reliability analysis of redundant structural systems

2.1 Active learning reliability method combining Kriging and Monte Carlo Simulation

Kriging is an interpolation method that aims to predict the response of a given function at any point based
on the information obtained at a set of locations known as sample points. This model is based on the idea that a
function g(x) may be seen as the realization of a Gaussian process, given by (Echard et al. [15], Xiao et al. [16]):

g(x) = fT (x)β + z(x) (1)

where fT (x)β is the mean value of the Gaussian process and z(x) is a Gaussian process with zero mean. The
covariance, COV , between two points xi and xj , is formulated as (Forrester et al. [17]):

COV (xi,xj) = σ2Rθ(xi,xj) (2)

where σ2 is the process variance and Rθ is the correlation function which depends on a set of parameters θ. There
are several correlation functions which can be employed, in this paper the Gaussian correlation function is chosen:

Rθ(xi,xj) = exp

[
−

n∑
k=1

θk

∣∣∣xik − xjk∣∣∣2
]

(3)

where n is the number of variables and θk are the unknown correlation parameters. Based on the design of exper-
iments

[
x(1), ...,x(p)

]
and the corresponding responses

[
g(x(1)), ..., g(x(p))

]
, on p sample points, the unknown

parameters can be determined from maximum likelihood estimation as presented in, for example, in Forrester et
al. [17]. The prediction of g(x) at a training point x, follows a normal distribution, with mean µĝ(x) and variance
σ2(x) expressed as:

µĝ(x) = fT (x)β̂ + rT (x)R−1
θ (g − Fβ̂)

σ2
ĝ(x) = σ̂2

(
1 + uT (x)(FTR−1

θ F)−1u(x)− rT (x)R−1
θ r(x)

) (4)

where rT (x) is the correlation between the point x and each of the p training points, g is the true performance
function response of each one of the p training points, and u(x) = FR−1

θ r(x)− β(x).
The accuracy of the metamodel is directly related to the design of experiments (DoE) used in its construction.

In this paper, the selection of the sample points is performed in an iterative process, as presented in Echard [15],
combining Kriging and Monte Carlo simulation (MCS). The sample points are chosen considering the learning
function UDS and the stopping criterion proposed by Xiao et al. [16]. The main advantages of this function are
the tendency of reduction of the variance in each iteration and the guarantee of a small value for the variance of
the probability of failure at the end of the learning process. The next best sample point x∗ to be added to the DoE
is given by:

x∗ = max(UDS); where: U iDS = Φ

(
−µĝ(xi)
σĝ(xi)

)[
1− Φ

(
−µĝ(xi)
σĝ(xi)

)]
for i = 1, ..., NMC (5)

where µĝ is the mean of the prediction and σĝ its standard deviation.
The stopping criterion considered, related to the failure probability, P̂f , and its variance, V ARP̂f

, is computed
as:
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√
VARP̂f

EP̂f

<

∣∣∣∣ ε

Φ−1(α/2)

∣∣∣∣ ; where:EP̂f
=

1

NMC

NMC∑
i=1

Îs(xi); VARP̂f
=

1

N2
MC

NMC∑
i=1

UDS (6)

where ε ∈ [2 × 10−2, 5 × 10−4] and α ∈ [2 × 10−2, 1 × 10−3].
The number p of initial sample points used to build the initial DoE depends on the number of random variables

n. According to Xiao et al. [16], if n < 10, p = 12 is recommended. Otherwise, p = n + 5. A coefficient of
variation, COVP̂f

, less than 5% is usually acceptable in reliability problems [15].

2.2 Limit state function formulation

In this paper, the finite element models are build by using the software MASTAN2, assuming the material
behavior as elastic-perfectly plastic, to aim the possibility of progressive collapse. Considering the mechanical
analysis, the applied load Pi, associated to each sample point i is divided into increments j. The load applied at
a given increment j of the structural analysis is defined by the load ratio λ, defined as a ratio between the applied
load at j and the load Pi. The load ratio, λ, is iteratively increased until a value α, defined in each case, and then
the response of the mechanical model is computed. The value of α varies between 1.0, in which the maximum
applied load is equal to Pi and the value αlim where the applied load is increased until the structural failure (Plim),
where the actual value of the limit state function is obtained for all samples. The limit state function is defined as:

g(X) = λ(X)− 1 (7)

where X is the vector of random variables and λ is the maximum load ratio obtained from the mechanical model
considering the value α. The procedure of the method is described on the flowchart presented in Fig. 1.

Figure 1. Flowchart of the adopted approach

3 Numerical examples

3.1 Six-bar truss structure

The first example involves the reliability analysis of an indeterminate six-bar truss with one degree of redun-
dancy, shown in Fig 2. The cross-sectional area of each element is equal to 2.30 × 10−4 m2. The statistically
independent random variables are the yield stress σyi(i = 1, ..., 6) and the applied loads Fi(i = 1, ..., 5), with
parameters summarized in Table 1. This example has been studied in Kim et al. [18] and Jiang et al. [11].
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Figure 2. Statically indeterminate six-bar truss

Table 1. Random variables for statically indeterminate six-bar truss

Variable Distribution Mean Coefficient of variation

F1 Normal 50 kN 0.1
F2 Normal 30 kN 0.1
F3 Normal 20 kN 0.1
F4 Normal 30 kN 0.1
F5 Lognormal 20 kN 0.1

σyi(i = 1, ..., 6) Normal 276 MPa 0.05

Considering the number of random variables presented in this example, the number of initial training samples
p, used to build the initial metamodel, is selected as 16. The initial MCS population and the UDS parameters are
set to 1.0 × 105 e 2.0 × 10−2, respectively. Figure 3 compares the results obtained for the failure probability
and the stopping criterion along the adaptive process. Table 2 compares the results obtained after 254 limit state
evaluations (16+238), when converge for Plim (Reference) is achieved.

As can be seen, the accuracy of the estimated failure probability increases proportionally to the approximation
of the actual value of the limit state function, which means the increase of the applied load ratio until failure of
the system occurs (Plim), used as reference. Considering the number of limit state function evaluations necessary
for achieving the convergence when used its actual value (254), it can be noticed that when load factors close to
1.0 are used, although approximated results of the failure probability are obtained, the convergence criterion is not
achieved. It indicates that a larger number of limit state function evaluations may be necessary in these cases.
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Figure 3. (a) Failure probability and (b) stopping criterion over the adaptive process
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Table 2. Probability of failure for 254 limit state function evaluations

Load factor (α) Probability of failure (Pf ) Stopping criterion

1.0 (Pi) 5.13× 10−1 5.78× 10−4

1.05 6.20× 10−3 1.72× 10−2

1.1 1.59× 10−3 1.25× 10−2

1.2 1.49× 10−3 1.03× 10−2

1.3 1.50× 10−3 9.56× 10−3

1.4 1.48× 10−3 8.33× 10−3

1.5 1.51× 10−3 7.81× 10−3

Reference (Plim) 1.50× 10−3 8.59× 10−3

3.2 Truss bridge structure

The second example consists in the truss bridge shown in Fig 4. This problem has been investigated previ-
ously in Kim et al. [18] and Jiang et al. [11]. The cross-sectional areas of each member are presented in Table
3. The yield stress σyi(i = 1, ..., 25) and the applied loads Fi(i = 1, ..., 2) are statistically independent random
variables with parameters summarized in Table 4.

Figure 4. Truss bridge structure

Table 3. Cross section areas of elements

Elements Cross section areas (m2)

1 - 6 1.5× 10−3

7 - 12 1.4× 10−3

13 - 17 1.2× 10−3

18 - 25 1.3× 10−3

Table 4. Random variables for the truss bridge structure

Variable Distribution Mean Coefficient of variation

F1 Lognormal 160 kN 0.1
F2 Lognormal 160 kN 0.1

σyi(i = 1, ..., 25) Normal 276 MPa 0.05

For this example, the number of initial training samples p, used to build the initial metamodel, is selected as
32. The initial MCS population and the UDS parameters are set to 4.0 × 105 e 2.0 × 10−2, respectively. Results
obtained for the failure probability and the stopping criterion along the adaptive process are shown in Fig.5. Table
2 compares the results obtained after 115 limit state evaluations. As shown, the accuracy of the failure probability
increases, and the convergence criterion is achieved, for higher values of α.
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Figure 5. (a) Failure probability and (b) stopping criterion over the adaptive process

Table 5. Probability of failure for 115 limit state function evaluations

Load factor (α) Probability of failure (Pf ) Stopping criterion

1.0 (Pi) 5.88× 10−1 1.71× 10−3

1.05 6.18× 10−3 2.04× 10−2

1.1 5.23× 10−3 1.05× 10−2

1.2 5.21× 10−3 8.55× 10−3

1.3 5.29× 10−3 8.09× 10−3

1.4 5.03× 10−3 6.98× 10−3

1.5 5.25× 10−3 8.27× 10−3

Reference (Plim) 5.23× 10−3 8.59× 10−3

4 Conclusions

In this paper, the reliability analysis of redundant systems is considered using the global structural response as
a limit state function. The computational efficiency is increased by using Kriging surrogate models and the effect
of the load factor, applied in the mechanical model to obtain the value of limit state function at the sample points, is
evaluated. Results indicate that a good accuracy for the failure probability and the stopping criterion are achieved
when the value of the limit state function is as close as possible to its actual value, which means α values close to
the reference. For the examples presented herein, values of load factor larger than 1.1 were capable of estimating
the failure probability. However, more limit state evaluations can be necessary to achieve the convergence when
compared with values close to the one in which failure of the system occurs.
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