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Abstract. To determine an optimum geometry of stiffened panels applied to hulls of ships about their ultimate 

strength (σult), analyses are performed applying nonlinear FEM on stiffened panels subjected to axial load. A 

Artificial Neural Networks (ANN) metamodel is presented to predict responses demanding a smaller number of 

simulations by the nonlinear FEM to accurately assess the structural capacity. Initially a simply supported thin 

plate without stiffeners was adopted, called a reference plate, using its ultimate strength as a reference value for 

the study. A panel of volume Vt=91.035x106 mm3 was adopted. After that, part of its volume has been converted 

into stiffeners, which were incorporated into the plate, without varying the final volume of the plate. This made it 

possible to evaluate the design variables plate thickness (tp), as well as the ratio between the height of the 

stiffener and its thickness (hs/ts). In response, the use of Cross-Entropy (CE) optimization algorithm and the 

ANN to predict a sampling by Monte Carlo allowed an optimization of the design variables resulting in a 

stiffened plate model with approximately 3.5 times resistance of a plate of the same volume, length, and width, 

but without stiffeners. 
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1  Introduction 

Stiffened plates are one of the basic components in ships' hulls structures and, due to their thin-walled 

nature, are susceptible to post-buckling deformation because of an increased load. This behavior represents an 

important safety margin for board design (Gambhir [1]). Furthermore, in a wave condition, the elements present 

in the lower and lateral part of the hull are subjected to uniaxial and biaxial compressive loads (Xu et al. [2]). 

According to Cai et al. [3] the stiffened plates optimization process deals with shape optimization with 

variable topology, as a result, it is important to design the structural members optimally, choosing the optimal 

geometric dimensions of the plate, as well as the excellent geometric relationships for the stiffeners to be 

applied. Therefore, realizing a structural optimization analysis will idealize optimal structural performance. 

Moreover, according to Chojaczyk et al. [4] sampling simulation techniques have their origin in the Monte Carlo 

(MC) simulation method, which generates randomly a large set of samples. Therefore, in optimization problems, 

large sample numbers of numerical analysis can favor prohibitive computational efforts. Thus, to overcome the 

high computational demand the use of metamodels for the limit state functions can be considered to provide 

accurate approximations at a low computational cost (Gaspar et al. [5]). In addition, the parameters that define 

the optimization variables are usually obtained by several tests, but these tests are expensive and time-

consuming. Studies such as Borges et al. [6] present numerical evaluations of the limit state of structures. 

As a surrogate solution, Machine Learning (ML) metamodels can be used as prediction models (Nguyen et 

al. [7]). Also, according to the authors, the most significant advantage of ML models is certainly dealing with 

non-linear input-output relationships, which are not easily expressed in mathematical models considering the 

variables they involve. The Artificial Neural Networks (ANNs), model based on ML, has been applied to several 

engineering problems. For example, Zhu, et al. [8], Chojaczyk et al. [4] and, Nguyen et al. [7]. 



Ultimate strength optimization of stiffened panels based on Artificial Neural Networks  

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

Therefore, the present study will perform a numerical analysis of the mechanical behavior of plates with 

flat-bar stiffeners through the non-linear Finite Element Method (FEM) to determine, using Cross-Entropy (CE) 

algorithm, its optimized geometric configuration that leads to the best ultimate strength performance subject to 

axial compression. A prediction and metamodel based on Artificial Neural Networks (ANN) is presented. 

2  Stiffened panel structural model  

As fundamental models, stiffened panels proposed by Tanaka et al. [9], from the bottom plating of the bulk 

carrier are selected. The schematic illustration of the model is shown in Fig. 1. As shown in Fig.1, the square 

plate has the main dimension as B=2550 mm, and tp is a thickness of the local panel partitioned by stiffeners. 

The spacing between adjacent longitudinal stiffeners is denoted as b, defining an aspect ratio of the local panel 

taken as B/b = 3.0. The stiffened panel is composed of two longitudinal stiffeners equally spaced with a Flat-type 

cross-section with hs being the height and ts the thickness of the stiffeners. In the present study, the degrees of 

freedom are represented by the ratio of the height/thickness dimensions of the stiffeners (hs/ts) and tp.  The 

material adopted in this study is the AH-36 steel with yield stress: σY=355 N/mm2; Young’s modulus: 

E=210000N/mm2, and Poisson’s ratio: ν=0.3.  

 

Figure 1. Stiffened plate model for bulk carriers. (a) top, (b) lateral and (c) isometric views 

In the proposed model, longitudinal girders and transverse frames are provided on plating, for that reason, a 

panel with the four edges simply supported along the lines of its fixation is assumed. All nodes along the four 

edges are constrained to deflection and rotation along the thickness direction (uz, rz=0). The two unloaded edges 

are constrained with uy=0, making them deform in the plane, but with the displacements being uniform along the 

length of the plate. The reactive edge is constrained to axial deformation at ux = 0. A load qy is applied axially on 

the two perpendicular edges (along x). 

2.1 Nonlinear FEM analyses on stiffened panels 

For the present study, the structural behavior of a set of stiffened plates under uniaxial compression is 

computed through nonlinear FE analysis using the ANSYS software. To do so, the SHELL93 finite element was 

adopted once it was already used satisfactorily in similar previous works (Lima, et al. [10], Lima, et al. [11]). 

The SHELL93 is a quadrilateral isoparametric finite element, having eight nodes with six degrees of freedom per 

node: rotations around the x, y, and z axes, and three translations in the x, y, and z directions. The finite element 

mesh is generated considering a quadratic element with side l=50 mm. It is important to emphasize that both the 

plate and the stiffeners have the same element size. The nonlinear material behavior is modeled using a linear-

elastic and ideally-plastic material law, neglecting the strain hardening effect. 

The structural analysis will be done as proposed by Paik, et al. [12]. According to the authors, this analysis 

is related to use geometric nonlinearity associated with buckling and material nonlinearity due to yielding or 

plastic deformation. So, a buckling eigenvalue analysis using FEM is performed, thus discovering the buckling 

mode of the plate. In the next step, the buckling mode obtained through the eigenvalue analysis is amplified to 

configure the maximum initial imperfection of the plate corresponding to a value of wo=b/200 (Paik, et al. [12]). 

For the analysis of the plate's ultimate load, according to Lima, et al. [11], a reference load is given by 
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Py=σytp, applied in small increments to the edges parallel to the y axis of the plate (Fig. 1). In each load 

increment, the Newton-Raphson method is applied to determine the displacements corresponding to the 

equilibrium configuration of the plate.  

3  A proposed approach using Artificial Neural Networks 

In the ANN, the neuron is a processing element with several inputs and one output. In this present study the 

multi-layer feed-forward perceptron (MLP), will be trained by using the data (Chojaczyk et al. [4], Nguyen et al. 

[7]). In the MPL algorithm the neurons are classified into three components: (i) input layer, where enter input 

parameters, (ii) one or more hidden layers, and (iii) an output layer, which contains the expected result. Fig. 3 

depicts an ANN model. 

 

Figure 2. Depiction of the proposed ANN model 

Fig. 2 shows that the number of neurons in the input layer is equivalent to the number of input variables, 

while in the output layer it depends on the number of outputs to be approximated. However, the selection of 

network optimal architecture is not a simple task, and no general rules are apposite for the number of hidden 

layers and the number of neurons in the hidden layer estimations (Chojaczyk et al. [4], Nguyen et al. [7]). Fig. 3 

illustrates m as the number of neurons. Each neuron receives an input signal vector x=[x1,x2,…xn] from n input 

channels. These neurons are connected, in which the connection has a weight w, and each neuron contains a bias 

and an activation. Next, the weighted sum of x is calculated by multiplying each element xk by a coefficient wmk 

demonstrating the proper importance of input channel k. The activation am of the m-neuron is:  

 
1

n

m mk n m
k

a w x b   (1) 

where bm ∈ R is the bias, is a constant corrective term which allows having a non-negative activation am when all 

elements of the input vector x are 0. The output signal value y is calculated as a function of the activation. It is 

necessary to perform non-linear processing in am to represent the non-linear relationship between the input and 

output layers. The Rectified Linear Unit (relu) functions were used. 

However, scaling is necessary because differences between two values that are too high or too low will 

result in an insignificant difference in function output, which makes the training process difficult (Iman et al. 

[13], Nguyen et al. [7]). To start the training process, training data need to be scaled, so that xi ∈ [0,1], before 

introducing to the network. In the feed-forward back-propagation algorithm, the input data are provided to the 

input layer, which transfers the information forward, through the different connections, from one neuron to 

another in the network. The Adam algorithm was adopted to adjust the ANN model weights and biases. This is a 

method for efficient stochastic optimization that only requires first-order gradients with little memory 

requirement, is uncomplicated to implement, computationally efficient, and is well suited for problems that are 

large in terms of data and/or parameters (Kingma and Ba 2017 [14]). Since the output from the forward pass is 

obtained, the default error function used for training feed-forward networks is the mean squared error (MSE). To 

find the optimal weights and biases that can minimize the MSE, expressed as: 
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where N is the number of samples, ti and pi are the target and predicted values of the ith sample, respectively. 

 In general, the higher the complexity of a problem, the larger the number of processing elements in the 

hidden layer is needed for a good approximation level, and often this is found based on a trial-and-error process. 

In this study, the trial-and-error method was used to obtain the number of hidden layers as well as the number of 

neurons in each hidden layer. The number of neurons is decided by the input and output parameters. All analyzes 

were performed using Keras and TensorFlow package in Python language. 

For this present study, 135 samples were considered. The sample data are taken of another analyzes. All 

samples have constant total volume Vt=91.035·106 mm³. This volume refers to a plate with the same dimension 

B proposed, but without the presence of stiffeners and with plate thickness tp=14 mm. Keeping the value of B 

fixed, a volumetric fraction of the material will be transformed into stiffeners, as shown in Fig. 1. In this way, 

there is a variation of the input variables of the ANN hs/ts and tp. The sample plan was distributed along with the 

two variables as shown in Fig. 3. For each sample, a numerical simulation was performed in the Ansys software. 

 

Figure 3. Sample data 

The combinatorial optimization problem resulted from the FEM formulation is solved by an algorithm 

based on the CE method. The CE algorithm is a stochastic optimization method based on the probability model 

proposed by Rubinstein [16]. It consists of an adaptive importance sampling method that can be used to search 

for improved solutions of optimization problems. The CE algorithm has a statistical theoretical foundation, and 

the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in the parameter update. So that 

its effectiveness, according to Rubinstein [16] depends on the construction of the probability model and 

parameter updating to ensure the estimation accuracy. To apply the CE optimization let X be an arbitrary set of 

states and S a real-valued performance function on X. The goal is to maximize S over X, and the corresponding 

optimum x. Denote the maximum by γ∗, so that: 

 * * max .
X

S S
x

x x   (3) 

Step 1: Input initial statistical vector v0, sample size N. and rarity parameter ƍ. Let Ne=ƍN (number of elite 

samples) and set t = 1 (level counter). 

Step 2: Generate X1,…,XN~iidf(·,vt-1), where X1,…,XN are iid samples. Compute S=(Xi) for all i, and order them 

from smallest to largest: S(1)≤… ≤S(N). Let γt be the sample ƍ-quantile of performances; that is, γt=S(Ne). 

Step 3: Use the same sample X1,…,XN and solve the stochastic program: 

 I
1

max ln ; .
N

k t k
k

S f
v

X X v   (4) 

Step 4: While the sampling distribution is not degenerate, denote the solution by vt, set t=t+1 and go to Step 2. 

4  Results 

Using as a reference the ultimate strength of the plate with the same volume Vt=91.035·106 mm³, but 

without stiffeners (σuR=63.950 N/mm2), the ultimate strength values for the cases of plates with stiffeners were 
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normalized, obtaining the values σuN. 

4.1 Computational Model Verification 

The verification of the computational model of elastoplastic buckling was performed considering a plate 

with longitudinal T-section stiffeners under axial compression proposed by Estefen, et al. [14], In the structure 

a=200 mm, b=185,39 mm, tp=1,03 mm, hs=22,6 mm, ts=0,77 mm, tf =1,03 mm, c1=18 mm and c2=36 mm. The 

material properties used are σY=381.4 N/mm2, E=207800 N/mm2
, and ν=0.3. The edges on which the axial load 

is applied were considered clamped (one of them has the allowable translational movement in the y-direction) 

while the other edges were considered simply supported. The initial imperfections for the models presented were 

mapped with sub-millimeter precision equipment. For the numerical analysis, the authors adopted the ABAQUS 

FE software, and the discretization was performed with the shellS4R element. To verify the computational 

model, the same mesh discretization was proposed by Estefen, et al. [15], however, with the finite elements 

SHELL93 of ANSYS software. According to Estefen, et al. [14], the Ultimate Axial Force (Fult) values of 

142,506 kN and 134,347 kN were obtained for the experimental and numerical analyzes of the stiffened panel 

under axial compression. In the numerical analysis in the present study, Fult =131.797 kN was obtained. This 

value presents a difference of 7.515% and 1.898% concerning the experimental and numerical results obtained 

by the model proposed by Estefen, et al. [15]. From the Fult results, a good agreement can be seen between the 

numerical and experimental results obtained by Estefen, et al. [15], when compared to the proposed model. 

4.2 The ANN prediction model 

The ANN model for ultimate strength response prediction consists of a prediction model where four hidden 

layers were considered. The neurons in the input layer represent the two input parameters (tp and hs/ts). Through 

a sensitivity analysis, 256 neurons were adopted in the first hidden layer and 128 in others. The neuron in the 

output layer refers to the value of the ultimate buckling strength of the plate (σult). In the layers of this network, 

the relu activation function was used. The model will be evaluated over 100 epochs and a fraction of 33% of the 

training data was randomly selected to be used as test data. To analyze the results of trained ANN, the coefficient 

of determination (R2) can be applied as an adjustment indicator to measure the variation between predicted and 

actual data. Fig. 4 compares the application of a simple linear regression with a trained ANN. 

 

Figure 4. Comparison between actual and predicted σuN by (a) Linear regression (b) ANN. 

Fig. 4a shows the relationship between the actual values and the predicted results obtained by a simple 

linear regression considering the sample points. For this analysis, a coefficient of determination R2= 0.529 and 

0.492 was obtained for the training and test samples, respectively. This value can be compared to that of an ANN 

used as a prediction ANN model (Fig. 4b), obtaining R2= 0.991 and 0.953 for the training and test samples, 

respectively. This comparison once again underscores the feasibility of the proposed ANN model. The model 

also was evaluated through the MSE metric on that data at the end of each epoch. Fig. 5a shows the performance 

of the ANN model developed for the prediction model over 100 epochs. For each epoch, the MSEs for training 

and testing were obtained as a response. In general, the system enters convergence over the analyzed periods. 

Fig. 5b zooms in and details the MSE curves by epoch indicating a value of 0.0058 for the MSE of the training 

samples and 0.0317 for the test samples in the established stopping criterion (100 epochs). The low MSE values 

found imply that the ANN model was well trained. 
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Finally, with trained and tested ANN, it is possible to remove the computational cost calculation barrier to 

solving optimization problems in cases where the use of linear regression is not feasible. In this way, it is 

possible to carry out the association of the trained neural network to perform the analysis of the optimal ultimate 

normalized strength value (σuN
opt). This value will be associated with the optimal combination of tp

opt e (hs/ts)opt. 

An analysis using trained ANN is proposed generating a MC sampling analysis to determine σuN
opt. A 

sample group of N=105 observations will be analyzed. For this analysis, it was possible to determine the case that 

guarantees a performance with σuN
opt.  

 

Figure 5. MSE values for Training and Test points for trained ANN 

For uncertainty quantification in the present case the MC sampling was used. Fig. 6a shows the σuN 

histogram for the sample group with N=105 under investigation. As shown in the horizontal axis, a variation in 

the range of σuN values in the sample space can be evaluated. The σuN values have a mean μ=2.632, and standard 

deviation sd=0.7600. However, through the optimization process, σuN values greater than average μ are observed. 

 

Figure 6. MC data sample results (a) Histogram of predicted values of σuN, ANN predictions of σuN. (b) Effect of 

(hs/ts)×tp over σuN; (c) Distribution of the von Mises stress for optimized geometry. 

Fig. 6b presents a heat map to represent the ANN predictions of σuN for the different sample sizes 

presented. By MC analysis, the optimal sampling point with (hs/ts)opt=14.057, tp
opt=12.106 resulting in 

σuN
opt=3.578. Fig. 6c depicted the tension distribution for the optimal sampling point. Examining Fig. 6c, it is 

possible to observe the stress distribution for the optimal sampling point. It is observed that the von Misses stress 

distributions on the plates follow the local deformations caused by the axial compression resulting in three semi-

waves in the plates placed between the stiffeners.  

5  Conclusions 

The ANN metamodel for the stiffened plates system presented an optimization of the design variables with 
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the objective function of maximizing the σult of the plates with the presence of the stiffeners through an analysis 

that reduced the computation cost in the optimization process. This shows the importance of studies that 

combine the ability to reduce time and computational cost, showing satisfactory results in structural 

optimization. Moreover, the study enabled an analysis of the design variables, allowing the evaluation of the 

relationship between plate thickness (tp) and the height/thickness characteristics of the stiffener (hs/ts) with the 

ultimate strength of the stiffened plate. 

For the proposed analysis, using CE-MC optimization process, allows finding a optimal performance 

observed in the stiffened plate whose tp
opt=12.106 and (hs/ts)opt=14.057, presenting an improvement of 

σuN
opt=3.578, upon for the plate with the same initial volume of material, but without stiffeners. This gain points 

to the importance of studying the optimization of these structural elements and serves as an initial research 

analysis, which can be expanded in future work by applying the ANN models for other purposes such as creating 

classification systems by type of buckling, overall or local, analyze other models of stiffened plates with 

different purposes, as well as the study of different metamodels to analyze independent variables which directly 

influence the design of stiffened plates. 

The results obtained show that ANN methodologies are robust and efficient alternatives to traditional 

optimization methods for the analysis of complex structures and sets the base for future research developments 

considering uncertainty quantification and reliability analysis. 
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