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Abstract. In this paper, a multi-objective robust optimization methodology is applied to the suspension 
optimization problem of a quarter-car numerical model. In order to increase the driver’s comfort without 
compromising the drivability, the chosen objective function was the weighted RMS acceleration according to 
ISO 2631 with constrain regarding the suspension working space. The robust optimization is based in a 
probabilistic approach, more advanced compared to the interval based approach. Monte Carlo simulations are 
made to compare the statistics of the problem, as well as the failure probability. While the deterministic solution 
found 3.97% better mean acceleration values when compared to the robust optimization, the chosen solution 
generated by the multi-objective robust optimization results in a much lower failure probability: 10.55% for the 
Robust against 50% for the deterministic.  
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1  Introduction 

Vibration in vehicles is associated with many issues, like discomfort, excessive mental load, body ache, 
and even spine damage (Zamanian [1]). The vehicle suspension is designed to mitigate these problems, reducing 
the RMS (root mean square) acceleration on the passengers and driver. Active suspensions have shown to be 
more efficient, but are more complex and expensive than its counterparts. Thus, the passive suspension is still 
the most common type of suspension. 

As stated in Chowdhury and Taguchi [2], the parameter optimization of the passive suspension is an 
important step in the vehicle design. The optimization step can be done using a variety of methodologies, where 
the most popular ones include the use of optimization algorithms, widely applied in engineering.   

The numerical models and techniques for evaluating system responses in engineering are growing more 
and more precise year after year. Despite this evolution, the precision gained using advanced models and 
expensive approaches is often small compared to the uncertainty of such systems in real life. Besides that, the 
safety factor used to control uncertainties in engineering projects can lead to inefficient and heavy design if 
superestimated, and frail and risky design if underestimated. Hence, accounting for these uncertainties in the 
numerical study is of great importance. 

The engineering area that accounts for both, optimization and uncertainty, is called robust optimization 
(RO) and is the focus of the present study. 

Many authors have shown different frameworks to deal with RO in vehicle suspension. Cheng and Lin [3] 
used the software ADAMS to train a kriging surrogated model, which was then used in the optimization with a 
PSO (particle swarm optimization) algorithm. The use of a surrogated model is common in this research field 
since optimizing a vehicle model and account for uncertainties at the same time can be extremely expensive 
computational-wise. For this reason, the surrogated model technique can be seen in a variety of works, like: 
Cheng and Lin [3] (kriging), Gobbi et al. [4] (artificial neural network) and Park et al. [5] (artificial neural 
network). This approach can insert errors in the system, since the surrogated model admits errors depending on 
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how it is trained. 
Using Pearson or Spearman correlation coefficient to reduce the number of uncertain variables is also 

common (Gobbi et al. [4], Nohtomi et al. [6], Loyer and Jézéquel [7], Khalkhali et al. [8]). Again, reducing the 
number of uncertain variables can yield faster simulations, although this simplification can introduce errors in 
the final result. 

To evaluate the robust part of the optimization (i.e. finding the mean and the variance of the objective 
functions and constrains), many authors use Monte Carlo approach (Jamali et al. [9], Nohtomi et al. [6], 
Khalkhali et al. [8]). Monte Carlo is still the most reliable method for analyzing the uncertainties, but it is also 
the most computationally expensive, and thus, many authors combine this approach with the surrogated model 
technique and the Pearson/Spearman correlation technique. 

Another way to evaluate the robust part of the problem is using gradients and first-order Taylor Series 
expansion, like it is done by Loyer and Jézéquel [7], in frequency domain. According to Ang and Tang [10] this 
approach is fast, but the approximation is not very precise in the case where the objective functions or constrains 
are too non-linear and the uncertainty is sufficiently high. 

Most of the time authors use single-objective optimization algorithms, like the PSO or QPSO for example, 
despite RO problems being multi-objective in nature (optimizing mean and variance accounts for 2 separate 
functions by themselves). Multi-objective algorithms demands much more function calls than its single-objective 
counterpart, and since the robust part of the problem is already very computational costly, this method is usually 
avoided. 

2  Methodology 

This work aims at using the Taylor Series expansion method, as well as the MOQPSO (Multi-Objective 
Quantum Particle Swarm Optimization, Grotti et al. [11]) to tackle the RO problem of a quarter car traveling on 
a irregular road type C (ISO 8608 [12]) at 20 m/s. The objective functions are the mean and variance of the 
weighted acceleration (ISO 2631-1 [13]), with constrain regarding the suspension working space to ensure that 
the drivability is not impaired. The first-order Taylor Series expansion approximation is compared to the 
traditional Monte Carlo method for the optimized design. 

2.1 Irregular road profile 

According to ISO 8608 [12], a good numerical representation of an irregular road profile can be achieved 
through the use of a simple stochastic process using PSD (Power Spectral Density) as follows in eq. 1: 
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where 𝐺క  is the spectral density (m²/cycle/m), 𝑛 is the wave number (cycle/m), 𝐶 is the general irregularity 
coefficient (m³/cycle), 𝑤ଵ and 𝑤ଶ are the wave length distribution. The PSD is divided in 2 parts in the 
discontinuity frequency 𝑛଴, (cycle/m), usually defined as 𝑛଴ = 𝜋/2 ≅ 0,16 cycle/m. The PSD results in eq. 2: 

𝑥௔(𝑡௜) = ෍ ඥ𝐺௔(𝑓௜)∆𝑓𝑠𝑖𝑛(2𝜋𝑓௜𝑡௜ + 𝜑௜),

௡௘

௜ୀଵ

 (2)

where 𝜑௜ are phase angles uniformly distributed between 0 and 2𝜋, 𝑓௜ are the spectral density frequencies, and 
𝑛𝑒 are the number of spectral lines. The road chosen for this work is type C. 
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2.2 Human vibration exposure 

The evaluation of the vibration on the human body has been studied extensively. Today, it is well known 
that the ride comfort is proportional to the RMS acceleration. Given a time instance 𝑡 in the domain 𝑡ଵ ≤ 𝑡 ≤ 𝑡ଶ, 
the RMS acceleration, 𝑎௥௠௦, for an acceleration signal, 𝑎(𝑡), is: 

𝑎௥௠௦ = ඨ
1

𝑡ଶ − 𝑡ଵ
න [𝑎(𝑡)]ଶ𝑑𝑡

௧మ

௧భ

. (3)

ISO 2631-1 [13] goes beyond that, and states that the frequency of such vibration dictates how it is 
perceived by humans. In order to evaluate vibration in humans, a weighted sum approach is adopted: 

𝑎௪ = [∑ (𝑤௜𝑎௜)²௜ ]ଵ/ଶ
, (4) 

where 𝑎௪  is the frequency weighted acceleration, and 𝑤௜  is the weight of a given frequency 𝑎௜ assigned to the 𝑖-
th third of the octave band. Generally speaking, values between 2 and 10 Hz are the most perceived by the 
human body in terms of comfort. The acceleration signal must be measured on the seat (ISO 2631-1 [13]). 

In order to evaluate vibration in humans, ISO 2631-1 [13] alerts that time exposure and the type of activity 
being performed (such as reading or resting, for example) should also be considered. 

2.3 Quarter car suspension model 

The suspension model of choice for this work is a quarter car with 3 degrees of freedom. A schematic 
depiction of the suspension model can be viewed in Fig. 1, where ξ is the excitation input coming from the road 
irregularities, 𝑚ଵ is the unsprung mass, 𝑚௦ is the sprung mass, 𝑚௖ is the seat and driver mass, all in kg. 𝑧ଵ, 𝑧௦ 
and 𝑧௖, in blue, are the degrees of freedom corresponding to 𝑚ଵ, 𝑚௦, and 𝑚௖. 𝑘௦௦, 𝑘௦ଵ, and 𝑘௣ଵ are stiffness 
parameters of the driver’s seat, suspension, and tire, and 𝑐௦௦, 𝑐௦ଵ, and 𝑐௣ଵ are damping parameters of the driver’s 
seat, suspension and tire, respectively. 

 

Figure 1. Schematic depiction of the quarter car suspension model used in the simulation. 

The simulation time is set to 𝑇=5s, and the model velocity to 𝑣=20m/s. The simulation is solved in time 
domain using Newmark method. The numerical model can be written in matrix form in the following way: 

𝑲 = ቮ

𝑘௣ଵ + 𝑘௦ଵ −𝑘௦ଵ 0

−𝑘௦ଵ 𝑘௦ଵ + 𝑘௦௦ −𝑘௦௦

0 −𝑘௦௦ 𝑘௦௦

ቮ, (5) 
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𝑪 = อ
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−𝑐௦ଵ 𝑐௦ଵ + 𝑐௦௦ −𝑐௦௦
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อ, (6) 

𝑴 = อ

𝑚ଵ 0 0
0 𝑚௦ 0
0 0 𝑚௖

อ, (7) 

and the equation of motion that governs the system: 

𝑴𝑿̈ + 𝑪𝑿̇ + 𝑲𝑿 = 𝑭𝒆, (8) 

where 𝑲 is the stiffness matrix, 𝑪 is the damping matrix, 𝑴 is the mass matrix, 𝑿 is a vector containing the 
position of each degree of freedom, 𝑿̇ the first derivative of 𝑿 with respect to time, 𝑿̈ the second derivative of 𝑿 
with respect to in time, and 𝑭𝒆 is the external forces vector given by: 

𝑭𝒆 = ൥
𝑘௣ଵ

0
0

൩ {} + ൥

𝑐௣ଵ

0
0

൩ ൛̇ൟ, (9) 

with ̇ being the first derivative of  (external excitation input coming from the road irregularities) with respect 
to time. At last, the suspension working space can be calculated by 𝑤𝑠ଵ = 𝑧௦ − 𝑧ଵ.  

The nominal values for this model, as well as the search interval for project variables, and variance, can be 
seen in Tab. 1. 

Table 1. Nominal values of the quarter car suspension model. 

Parameter Variable Mean Value Variance Search interval Unity 
Sprung mass 𝑚௦  730  37.5² - [kg] 

Seat and driver mass 𝑚௖  75 6.25² - [kg] 
Unsprung mass 𝑚ଵ 75.5  0 - [kg] 
Tire damping 𝑐௣ଵ 0 0 - [N.s/m] 
Tire stiffness 𝑘௣ଵ 175500 1250² - [N/m] 

Driver seat damping 𝑐௦௦ 2500 100² 1000 < 𝜇(𝑐௦௦) < 4000 [N.s/m] 
Driver seat stiffness 𝑘௦௦  100000  4000² 50000 < 𝜇(𝑘௦௦) < 150000 [N/m] 
Suspension damping 𝑐௦ଵ 1250 50² 500 < 𝜇(𝑐௦௦) < 2000 [N.s/m] 
Suspension stiffness 𝑘௦ଵ 30000 600² 10000 < 𝜇(𝑘௦ଵ) < 20000 [N/m] 

 

2.4 Probabilistic gradient based uncertainty evaluation 

There are two main strands for dealing with uncertainties: The probabilistic and the possibilistic approach. 
The possibilistic approach consists in finding the best and the worst combinations of the uncertain variables and 
parameters, without worrying about the statistics of the problem. This is useful when not much is known about 
the problem. However, when there is data about the problem (like the variance for example), a more advanced 
approach can be used: the probabilistic approach, which yields a more informative solution. In this work the 
gradient based uncertainty evaluation, which fits into the latter option, will be used. Let 𝑔 be a general function 
of a vector 𝑿 containing uncertain variables as follows: 

𝑌 = 𝑔(𝑿), (10) 

and defining expectancy, 𝐸, for continuous variables as: 

𝐸[𝑔(𝑿)] = න 𝑔(𝒙)𝒇𝑿(𝒙)𝑑𝑥
ஶ

ିஶ

, (11) 

where 𝒇𝒙 is the PDF (probability density function). 
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According to Beyer and Sendhoff [14], Sundaresan [15], and Ang and Tang [10], it is possible to expand 
the function 𝑔(𝑿) using Taylor series on the mean value of 𝑿. Truncating the series in the first order terms, the 
expectancy, 𝐸, and variance, 𝑉𝑎𝑟, of 𝑔 is found as such  

𝐸(𝑌) ≅ 𝑔(𝝁𝒙), (12) 

𝑉𝑎𝑟(𝑌) ≅ 𝑉𝑎𝑟(𝑿 − 𝝁𝒙) ൬
𝑑𝑔

𝑑𝑿
൰

ଶ

= 𝑉𝑎𝑟(𝑿) ൬
𝑑𝑔

𝑑𝑿
൰

ଶ

, (13) 

with the derivatives being evaluated over mean of 𝑿, 𝝁𝒙. 
Note that if 𝑔(𝑿) is approximately linear, this approximation should yield very good results for mean and 

variances of 𝑔(𝑿). Also, if 𝑉𝑎𝑟(𝑿) is relatively small when compared to 𝑔(𝝁𝒙), this approximation should be 
adequate even when 𝑔(𝑿) is non-linear (Ang and Tang [10]). 

This equations for mean and variance must be used to deal with the constrain problem in an analogous 
way. 

2.5 Multi-objective optimization approach 

As stated in the introduction, RO is a very expensive computational-wise problem. All methods used to 
account for uncertainties has shown to be very demanding, and most of the time the framework for solving RO 
problems is built around minimizing this heavy computational load. In this work, however, the gradient based 
method is used, which lessens the computational burden. This makes it possible to use more advanced 
approaches and algorithms on the optimization. The multi-objective approach using Pareto optimal set is most of 
the time avoided, despite RO being a multi-objective problem in nature. In this work the MOQPSO (Grotti et al. 
[11], Santana et al. [16], Grotti et al. [17], Gomes et al. [18]) will be used to tackle the multi-objective problem. 
The algorithm is based on the QPSO (quantum particle swarm optimization), and has been tested against high 
end algorithms like MUGA and NSGA-II, showing great results. 

3  Numerical Solution 

The RO problem is defined as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ቊ
𝑓ଵ = 𝜇൫𝑟𝑚𝑠(𝑎௪)൯

𝑓ଶ = 𝑣𝑎𝑟൫𝑟𝑚𝑠(𝑎௪)൯
 , (14) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝐺(𝑥) = 𝑃(max(𝑤𝑠ଵ) ≤ 𝑤𝑠௖௥௜௧) > 90%, 

𝑤𝑠௖௥௜௧ = 0,3 𝑚, 
(15) 

where 𝑎௪ is the weighted acceleration on the driver’s seat, 𝜇 corresponds to the mean value, 𝑣𝑎𝑟 corresponds to 
the variance, 𝑤𝑠௖௥௜௧ means the critical value for the working space, and 𝐺(𝑥) is the constrain function. Equation 
15 reads as: The probability for the maximum working space being smaller than 𝑤𝑠௖௥௜௧ must be more than 90%. 

The values of variance, uncertain variables, and parameters, are listed in Tab.1 for a total of 4 uncertain 
project variables and 3 uncertain parameters. The variance values corresponds to a coefficient of variation, 
CV=0.04, the same shown in Khalkhali et al. [8]. The resulting Pareto Front can be seen in Fig.2, where the 
point denoted by A is chosen using a utility function with equal weights (𝑈𝐹 = 𝑓ଵ𝑤ଵ + 𝑓ଶ𝑤ଶ). The point in red 
denoted by B is found using a deterministic approach and a single objective algorithm, the PSO (Particle Swarm 
Optimization). 

The optimization parameters used in the PSO are: Number of particles, 𝑁=100; momentum, 𝜔=0.9; 
individual and group cognitive components, 𝑐ଵ=𝑐ଶ=2.01; turbulence generator, 𝛼=0.8; turbulence decay, 
𝛼௧=0.99; and stop tolerance 𝑡𝑜𝑙=0.001. For the MOQPSO: Number of particles, N=40; cluster toleration, 
𝑡𝑜𝑙𝑙=10ି଺; contraction expansion coefficient lower bound, 𝛽ଵ=0.3; contraction expansion coefficient higher 
bound, 𝛽ଶ=1.3; number of front particles guide coefficient, 𝑔𝑢𝑖𝑑𝑒_𝑝𝑒𝑟𝑐=0.15; close particles guide coefficient, 
𝑔𝑢𝑖𝑑𝑒_𝑝𝑟𝑜𝑥=0.30; extreme particles guide coefficient, 𝑒𝑥𝑡𝑟𝑒𝑚𝑒_𝑔𝑢𝑖𝑑𝑒=0.30; and mutation factor, 𝑚=0.12. 
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A total of T=200460 function calls were used in both PSO and MOQPSO optimizations. Note that the 
solutions found in Fig. are result of the gradient based approximation and Taylor series expansion, and thus, are 
approximated values. 

 

Figure 2. Solution of the RO problem in Pareto Front form (gradient based approximation). 

Using LHS (Latin Hipercube Sampling) and Monte Carlo simulations (10000 function calls for each 
evaluation), it is possible to calculate the failure probability of each approach, the robust and the deterministic. 
The histograms for such Monte Carlo simulations can be seen in Fig.3, and the statistics of the solutions in 
Tab.2. 

  

Figure 3. Monte Carlo histograms: at left, weighted acceleration histogram, and at right, working space histogram. 

Table 2. Statistics for the solutions. Obtained using Monte Carlo (10000 function calls each). 

 Failure Probability[%] 𝜇(𝑎௪)[m/s²] 𝜎(𝑎௪)[m/s²] 𝜇(𝑤𝑠)[m/s²] 𝜎(𝑤𝑠)[m/s²] 
Reference Values 14.26 0.3908 0.0215 0.2823 0.0166 
Deterministic (B) 50.00 0.2776 0.0169 0.3014 0.0179 

Robust (A) 10.55 0.2891 0.0197 0.2810 0.0151 
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4  Conclusions 

From Fig. 2, it is possible to notice that the deterministic solution, B, has achieved lower 𝑎௪ when 
compared to the robust solution, A. Note that both solutions managed to decreased  the acceleration from the 
reference values for 26.02% (A) and 28.96% (B), which can be checked in Tab. 2. Despite that, the failure 
probability (constrain violation probability) for solution A is found to be 50%, and for point B it is 10.55% (Tab. 
2). This can be noted on Fig. 3 as well, where the deterministic histogram lays on the right side of the constrain 
line, indicating total violation. Hence, the 3.97% “better” solution resulting from the deterministic approach, is 
actually a risky design and should be avoided. This example shows how important it is to account for 
uncertainties in an optimization problem. 

The Pareto Front approach also shows to be interesting, since it allows for the designer to choose between 
different sets of project variables depending on how much uncertainty there is on the application. 
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