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Abstract. This paper aims to analyze the influence of geometrical parameters on the dynamical behavior of
viscoelastic beams. Viscoelastic materials are widely used in vibration control of dynamic systems. Usually, a
viscoelastic layer is applied on the surface of the structure and a second layer with elastic properties is used to
restrict viscoelastic displacements. This restrictive layer intensifies energy dissipation once it introduces shear
deformation in the viscoelastic material. Naturally, geometrical parameters, mainly the width of the viscoelastic
layer may influence the shear deformation and the efficiency of the vibration control treatment. For this analysis,
a recurrence based fractional derivative model is used, the system is discretized in finite elements and solved
using Newmark's  method. This procedure makes it  possible to compare  the mechanical  behavior  of several
viscoelastic beams with different geometries, and determine how they affect vibration control treatment.
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1 Introduction

Viscoelastic materials  have been widely used in vibration control,  however,  modeling their time domain
behavior is not an easy task. The dynamical behavior of these materials is characterized by a memory effect, i. e.,
previous stress and strain states influence current mechanical response. This feature is not well represented by a
complex modulus and even the use of the inverse Fourier transform from the frequency domain fails to describe
the time domain behavior [1].

With the evolution of Fractional Calculus in last century, a new time domain approach was developed: the
so-called Fractional Derivative Models (FDM). Bagley and Torvik [2, 3] were pioneers to model the behavior of
viscoelastic materials using FDM. Then, other authors have studied this subject [4, 5]. The Fractional Calculus
based models have shown to be the most powerful tool in modeling viscoelastic systems [6]. However, classical
FDM present some limitations with regard to applicability and computational time consumption, as discussed by
Nunes [7].

Willing to overcome these difficulties, a more efficient method for modeling viscoelastic material behavior
was developed at the Structural Mechanics Laboratory at the Federal University of Uberlândia – LMEst/UFU
[7]. This new model is based on a recurrence approach and it is capable of making the computational analyses
faster. Therefore, this paper aims to analyze the influence of geometrical parameters in the dynamical response
of damped structures  using this improved FDM, which represents  a  straightforward  way to incorporate  the
damping effects of viscoelastic materials in structural dynamic models.

2 Recurrence FDM

According  to  Nunes  [7,  8],  based  on  a  four  parameters  fractional  derivative  model  [3,  9],  shear  and
elongation constitutive law for a viscoelastic material is described in Eqs. (1)-(2), where τ and γ are shear stress
and deformation, σ and ε are normal stress and deformation, βG

j+1  and βE
j+1 are the recurrence terms described in

Eqs.  (3)-(4).  Seven  parameters  are  needed  for  this  model:  E0 and  E∞ represent  low  and  high  frequencies
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elongation modulus; G0 and G∞ are low and high frequencies shear modulus; aE and aG are elongation and shear
parameters; and α is the fractional derivative order.

                                                          (1)

                                                          (2)

                                      (3)

                                      (4)

                                                     (5)

                                                         (6)

3 FEM modeling

Consider  a  three-layered  sandwich  beam  with  two  elastic  faces  and  a  viscoelastic  core.  Based  on  the
Classical Laminate Theory (CLT), one describes the displacement field of this structure in term of four variables:
u, axial displacement; w, transversal displacement; θ, rotation and β, shear deformation of the viscoelastic layer.
The system is discretized in finite elements and linear shape functions are used for u and β, cubic functions for
w, and θ is related to w as its first derivative. Eqs, (7)-(10) describe the displacement fields, where {q(e)} is the
DOF vector and N(x) are interpolating function matrices.

                                                              (7)

                                        (8)

                      (9)

                    (10)

Kinetic energy is described in Eq. (11) and mass matrix is defined in Eq. (12), where k is referred to each of
the three layers; ρ, b, h, li and A represent the density, the width of the beam, the thickness, the finite element
length and the transversal area of each layer.

                                                     (11)

                   (12)
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Based on  Continuum Mechanics,  strain  fields  are  defined  as  the  first  derivative  of  displacement  fields.
Deformation energy is defined as the sum of its components for each layer. For the elastic layers, Eq. (13) shows
the deformation energy and Eq. (14) describes the stiffness matrix, where E represents the Young’s modulus.

                                                         (13)

                                         (14)

Using recurrence FDM described in Eqs. (1)-(2), viscoelastic layer deformation energy is described in Eq.
(15).  For this layer,  it  is  not  possible to define a single stiffness  matrix due to viscoelastic  memory effect,
therefore one stiffness matrix (Eq. (16)) is used for each time step and it is updated by the recurrence terms.

                                      (15)

          (16)

Global  mass  and  stiffness  matrices  are  assembled  and  the  system’s  equation  of  motion  is  found  using
Lagrange’s equation, which results in Eq. (17).

                            (17)

This equation is solved using Newmark’s constant average acceleration method and the displacements at
each time step are found.

4 Simulations

Consider  a  cantilever  sandwich  beam with  two elastic  faces  and  a  viscoelastic  core  whose  mechanical
properties are shown in Table 1. This structure is and subjected at its free end to a unit impulse force with the
peak at 2 ms. The FE model is discretized in 25 elements. The time interval is divided into 0.1 ms steps and
memory  length  uses  500  points  of  time.  The  viscoelastic  material  is  considered  to  be  at  27  ºC.  For  this
temperature, Nunes (2020)  determines the FDM parameters by a curve-fitting procedure. The author finds the
following values: G0 = 423,632.8 Pa, G∞ = 30,177.8 Pa sα, aG = 0.00022 sα, α = 0.6766. The thickness of each
layer is made to vary.

Table 1. Mechanical properties of the structure
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                                         a)                                                                                            b)

                                        c)                                                                                            d)
 

Figure 1. Influence the thickness of viscoelastic a) b), base c) and constraining d) layers on the time domain
response

Figure 2. Influence of the viscoelastic layer width on the system response.

Fig. 1 shows the time domain responses of the system.  The reduction in amplitude is expected when the
thickness of the elastic faces are increased [Fig. 1 a) and b)], since these parameters affect the stiffness of the
system, increasing it. When the thickness of the viscoelastic core  varies, however, the effect is reversed. This
occurs because the damping of the sandwich structure is due to shear deformations in the viscoelastic material,
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which  are  greater  when  the  velocity  gradient  in  the  viscoelastic  layer  increases,  and  this  occurs  when  its
thickness decreases  [Fig. 1 c)]. However, from a certain value, the increase in thickness does not have major
effects on the behavior of the system [Fig. 1 d)].  Fig. 2 shows the frequency domain response of the system,
indicating that this behavior occurs not only for the impulse time domain response, but also for a wide frequency
spectrum, which includes the resonance peaks.

5 Conclusions

This paper proposed the analysis of the influence of geometrical parameters in the time domain response of a
viscoelastically treated beam using an improved and more efficient fractional derivative model. The simulations
performed  in this  work  show a  great  influence  of  the  thickness  of  the  viscoelastic  layer  in  the  dynamical
behavior of the dampened structure. It can be seen that for a thin viscoelastic layer, the amplitude of the system
increases as its thickness increases. These results also reaffirm the capability of the recurrence FDM developed
in the Federal University of Uberlândia in describing viscoelastic material damping effects.

As future works the authors suggest a stochastic analysis to consider the presence of parametric uncertainties
in the  model  in  order  to  obtain  more  realistic  results  and  the  analysis  of  dampened  structures  as  laminate
composites treated with viscoelastics.
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