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Abstract. The advancement of engineering structures is increasingly leading to slender and light elements that
require more complex analysis. Instability problems are frequently observed in such situations, and their study is
of fundamental importance. Numerical methods are commonly used in those analyses. It is proposed in this work
to use a variation of the Finite Element Method, called for a Positional Formulation (PFEM), with the advantage
that the geometric nonlinearity is naturally incorporated into the method. In terms of physical nonlinearity, a
mixed-hardening model is used in the Formulation. The dynamic analysis is carried out by Newmark‘s method
of integration in the time domain, and the Newton-Raphson Method is used to solve the equations of equilibrium.
Also, Lyapunov exponents are employed to determine the regions where the chaotic behavior occurs. One example
of a two-truss bar is used to verify the effectiveness of the implemented formulation and the influence of inelasticity
in the chaotic behavior. The analysis is done by different values of the initial conditions, since chaos is sensitive to
such variations.
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1 Introduction

The advancement of engineering structures is increasingly leading to slender and light elements that require
more complex analysis. Instability problems are frequently observed in such situations and chaotic behavior is
one of them. The term chaos is commonly used to describe seemingly random behavior (Hilborn [1]). From a
mathematical point of view, it is associated with a phenomenon that has a sensitive dependence on initial conditions
(Layek [2]). The study of such phenomena is closely linked with nonlinear systems (Hilborn [1]), which describes,
therefore, nonlinear oscillation phenomena. Thus, the stability/instability of a system is only properly assessed
from the dynamic analysis point of view. There are many ways to determine the existence of chaotic behavior
and its applications in structural engineering are wide. Poddar et al. [3] make use of Poincaré Maps in the study
of elastoplastic beams with chaotic behavior, where the influence of geometric and material nonlinearity in the
evolution of the system’s behavior is explained. Thomsen [4] addresses chaotic vibrations of non-shallow arches
through Lyapunov exponents, Poncaré sections, and frequency spectra. Karagiozov and Karagiozova [5] also uses
Poincaré Maps and Lyapunov exponents to determine the sensitivity of initial conditions to the vibration response
of an elastoplastic column. Other works that can be cited in this field: Yang et al. [6], Luo et al. [7].

To obtain the answers to such problems and then analyze the nature of the behavior, numerical methods of
PDEs solution are used, more commonly performed by the finite element method. There are many variations of the
method, including positional formulation. Such a formulation was presented by Coda [8] and Greco [9], and used
for many purposes. Focusing on studies involving instability in slender elements, it is possible to cite Kzam [10]
and Fernandes et al. [11], the latter dealing with nonlinear oscillations. In the present work, positional formulation
and Lyapunov exponents were used to characterize the nature of the evolution of vibrations.
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2 Finite Element Method: Positional Formulation (PFEM)

The traditional way of solving differential equations in engineering problems is the Finite Element Method
based on nodal displacements. In Coda [8] a formulation based on nodal positions is presented, which can be
related to displacements by the eq. (1):

u = X−X0, u̇ = Ẋ and ü = Ẍ, (1)

where u is the nodal displacement, X0 is the initial nodal position vector, and X is the nodal position at any instant,
(̇) and (̈) represents velocity and acceleration in each formulation, respectively.

Furthermore, the method adopts the Total Lagrangian description, the Bernoulli-Euler kinematics, and the
equilibrium is described through the Principle of Total Stationary Energy. The formulation still has, in an intrinsic
way, geometric nonlinearity due to the use of the Newton-Raphson Method for the equilibrium solution.

Greco [9] adds to the Formulation the elastoplastic behavior in the material, making use of the mixed hard-
ening model. The author also included dynamic behavior considering the Newmark Method for the dynamic
analysis.

The formulation part of the energy functional that contains all the parts that contribute to the determination
of the system balance is given by eq. (2):

Π = Ut + P +Kc +Ka, (2)

where Ut, is the potential energy, P , work done by external forces, Kc, kinetic energy, andKa, damping, are given
by equations (eq. (3)-eq. (6)) that follows:

Ut =
1

2

∫
V

E(ε2 − εεp)dV, (3)

P = −FX, (4)

Kc =

∫
V

ρ

2
Ẋ2dV, (5)

Ka =

∫
V

cmρXẊdV −
∫
V

∫
Xk

cmρ
XẊ

Ẋ
dXkdV, (6)

where in eq. (3) E is Young modulus, ε is the engineering strain, and plastic strain εp is given by the hardening
model. F is a set of external forces, X represents a set of independent coordinates of a given nodal, and Ẋ is a set
of nodal velocity. Yet, cm and ρ represent the coefficient of damping and specific mass, respectively. Furthermore,
the strain energy is given in terms of reference volume (V ), due to the Total Langrangian description.

The mixed-hardening model adopted in the formulation is described by the evolution law of the elastic limit
by:

Φ(σ, σy,K,H) = |σ − q| − (σy +Kα) and Φ ≤ 0, (7)

where σ is the stress, σy yield stress, α and q(H) are internal variables which represent, respectively, the plastic
deformation evolution and the translation of the center of the elastic interval. K is the hardening modulus and H

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



G. Barbosa, W. Fernandes, M. Greco

is the kinematic modulus. Furthermore, when K = H = 0, the perfect-plasticity model is obtained, and H = 0
gives the isotropic-hardening model. And, Φ greater than zero indicate plastic deformation. The solution for
plastic deformation is carried out using numerical integration according to returning-mapping presented by Simo
and Hughes [12].

In the formulation presented by Greco [9], the Rayleigh’s proportional mass dumping is used. Yet, the mass
is considered discrete and the terms related to rotation are neglected, which explains the zeros on the diagonal of
the matrix (eq. (8)). Hence, in the right-side of the same eq. (8), the coefficient of damping can be rewritten in a
matrix form.

M =
ρAL

2
diag

[
1 1 0 1 1 0

]
, C = 2cmM. (8)

Through the eq. (6) and eq. (8), the damping energy can be described in terms of:

Ka = CXẊ−C

∫
Xk

XẊ

Ẋ
dXkdV. (9)

The functional described in eq. (2) should be minimized in order to obtain the equilibrium of the system
through the Principle of Stationary Total Potential Energy. Then, the derivative of Ka and Kc in relation to nodal
position is:

∂Ka

∂Xk
=

DOF∑
i=1

cmi

(
Ẋi +Xi

∂Ẋi

∂t

∂t

∂Xk
− ẊiẌi

Ẋ

)
δik, (10)

∂Kc

∂Xk
=

DOF∑
i=1

miẊiẌi
1

Ẍi

δik =

DOF∑
i=1

mkẌk, (11)

where the δik represents the Kronecker delta. Moreover, the development of this derivative is given in detail by
Greco [9].

Using eq. (10) and eq. (11), also noting that the derivate of eq. (4) is trivial, the equation of motion can be
represented as follows:

∂Π

∂X
=
∂Ut
∂X
− F + MẌ + CẊ = 0, (12)

where can be observed there is a dependence of time (t) and nodal position vector (X).

2.1 Description of numerical integration

To perform time derivation using Newmark Method it is necessary to rewrite eq. (12) for the current time
t+ ∆t, as:

∂Π

∂X

∣∣∣∣
t+∆t

=
∂Ut
∂X

∣∣∣∣
t+∆t

− Ft+∆t + MẌt+∆t + CẊt+∆t = 0, (13)

which represents equation of motion in a discrete form.
Through the Newmark Method for the positional formulation, it is possible to express
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Xt+∆t = Xt + ∆tẊt + ∆t2
[(

1

2
− β

)
Ẍt + βẌt+∆t

]
, Ẋt+∆t = Ẋt + ∆t(1− γ)Ẍt + γ∆tẌt+∆t, (14)

and using eq. (13) in order to isolate Ẍ0 together with eq. (1) and eq. (14) the equation of positional acceleration
in t+ ∆t is provided:

Ẍt+∆t =
Xt+∆t

β∆t2
− Xt

β∆t2
− Ẋt

β∆t
−
(

1

2β
− 1

)
Ẍt, (15)

then, returning in eq. (13), yields the following equation:

∂Π

∂X

∣∣∣
t+∆t

=
∂Ut
∂X

∣∣∣
t+∆t

−Ft+∆t+
MẌt+∆t

β∆t2
Xt+∆t−MQt+CRt+

γCẊt+∆t

β∆t
Xt+∆t−γ∆tCQt = 0, (16)

with Qt and Rt containing contributions of the variables in the previous time instant. Moreover, these two vectors
are given by the following equations:

Qt =
Xt

β∆t2
+

Ẋt

β∆t
+

(
1

2β
− 1

)
Ẍt, Rt = Ẋt + ∆t(1− γ)Ẍt. (17)

Finally, applying Newton-Raphson Method in eq. (16), one obtains:

∂2Π

∂X2

∣∣∣
t+∆t

= ∇g(X0) =
∂Ut
∂X

∣∣∣
t+∆t

+
M

β∆t2
+

γC

β∆t
, (18)

that define the Hessian matrix for the dynamic problem. Furthermore, for consistent notation, the X0 concerns the
initial position vector.

3 Chaos and Lyapunov exponents

In systems with nonlinear oscillations, chaotic behavior is possible. Despite the apparent randomness of the
phenomenon, it is possible to describe a given system through differential equations (Hilborn [1]). A system is
stable if a small variation in initial conditions leads to a small variation in response (Bažant and Cedolin [13]).
Thus, it is said that chaotic behavior is characterized by sensitivity to initial conditions. To determine the stability
of a system and check if chaotic behavior occurs there are several tools, as seen in Parker and Chua [14]. In the
present work, Lyapunov exponents are used, which are briefly described below.

Lyapunov exponents are parameters used to determine the stability of a system of any type, including chaotic
systems (Parker and Chua [14]). These exponents can be determined, among other ways, by data from a one-
dimensional time series (Hilborn [1]). Thus, assuming equality between time intervals τ , a difference between
sequences of n-order is expressed by:

tn − t0 = nτ, dn = |x(tj+n)− x(ti+n)|. (19)

Also, assuming that the system presents exponential evolution, as eq. (20):

dn = d0eλ1n, (20)

and then the first Lyapunov exponent is obtained by the left term of eq. (21):

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



G. Barbosa, W. Fernandes, M. Greco

λ1 =
1

n
ln

(
dn
d0

)
, λ2 =

1

n
log2

(
dn
d0

)
. (21)

It is also possible to express the same parameter in terms of no longer the natural logarithm but of log2

(right-side-term of eq. (21)), representing the loss of information contained in the initial value of the series.
Thus, λ1,2 > 0 express chaotic behavior, i.e, trajectories diverge exponentially. On the other hand, λ1,2 < 0,

trajectories converge exponentially, indicating stability, and if λ1,2 = 0, the system does not evolve for any of the
cases mentioned.

Hilborn [1] highlights the consequence of the hypothesis that the evolution of differences is exponential. The
author recommends analyzing the graphs of the natural logarithm of the difference dn versus the index n. If the
divergence is exponential, the points will be close to, or on a straight line whose slope is the Lyapunov Exponent.
Otherwise, then the Exponent is meaningless in that range.

Also according to Hilborn [1], it is possible to write the exponents in such a way as to reduce the noise of the
data, in terms of an average exponent, in the form:

λaver
1 =

1

N

N∑
i=1

λ1(x(ti)), λaver
2 =

1

N

N∑
i=1

λ2(x(ti)), (22)

for a representative value, the author recommends N between 30 and 40, where N is the number of representative
exponents.

4 Example: two-bars truss under harmonic load

It is intended to validate the proposal formulation using a relationship between the initial conditions, in-
elasticity, and Lyapunov exponents for a two-bar truss with pinned ends (Fig. 1), submitted to a harmonic load
(F0 = 4000N , ω = 57 rad/s). The geometrical and physical properties are L = 10m, h = 0.20m, A =
29.14 cm2, I = 778.3 cm4, E = 199.9GPa, and ρ = 7849 kgf/m3. The initial velocity conditions are 0.0,
0.001m/s, and 0.005m/s. The Newmark scheme (γ = 0.50; β = 0.25; ∆t = 10−3 s) is used, without damping,
and one finite element per bar. Four material conditions are considered: elastic model, elastic-perfectly-plastic
model (σy = 130MPa), isotropic model (σy = 130MPa; K = 19.99GPa), and mixed-hardening model
(σy = 130MPa; K = 19.99GPa; H = 1.999MPa).

Time-history results of the present work have good agreement with SAP2000 (Fig. 1e). The fundamen-
tal natural frequency obtained was 57.0046 rad/s (present work, Subspace Iteration Method) and 57.011 rad/s
(SAP2000). A small change in the initial velocity Ẋ(0) leads to a significant change in response for t ∼ 2 s (0.0
to 0.001m/s) and t ∼ 2.2 s (0.001m/s to 0.005m/s) according to Fig. 1b. The system presents dynamical snap-
through at t ∼ 1.3 s. The isotropic model (Fig. 1c) and mixed-hardening model (Fig. 1d) show similar behavior for
Ẋ(0) = 0.001m/s and Ẋ(0) = 0.005m/s, but the snap-through occurs first for the isotropic model at condition
Ẋ(0) = 0.0. For the elastic-perfectly plastic model (Fig. 1a) there is no visible divergence between the responses.

Figure 2 shows the variation of the divergence d(i)(t) between responses. The average Lyapunov Exponents
are determined in regions of positive slope (average line) for each case. The elastic-perfectly-plastic (Fig. 2d)
response differs from other cases presenting small variations for d(1)(t) and d(2)(t).

The time intervals, and Lyapunov exponents are indicated in Table 1. All cases present an increase of the
exponents when the initial velocity condition also increases. The mixed-hardening model shows the largest loss
of information about the initial conditions (11.087 · 10−3 bits/s). The elastic-perfectly-plastic model presents the
lowest values in a later time interval compared to other cases.

5 Conclusion

In this work, the influence of inelasticity on the chaotic behavior of the two-bar truss, subjected to a harmonic
load, is evaluated using Lyapunov exponents. The Positional Finite Element Method formulation with nonlinear
geometric and inelasticity present a good agreement with SAP2000 (classical FEM). The inclusion of inelasticity
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(c) Isotropic Model
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(d) Mixed-Hardening Model
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(a) Elastic-Perfectly Plastic Model
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(e) Elastic Model
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(f) Two-bar truss system
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Figure 1. Positions (central node) vs. time for different initial velocity conditions and material models
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Figure 2. Divergence d(i)(t) vs. time for material models

(isotropic and mixed-hardening models) caused an increase of the Lyapunov exponents, with a small decrease of
the time interval for the two-bar truss. Furthermore, the mixed-hardening model presented the highest Lyapunov
exponents, indicating a higher level of instability. It can also be seen in the Table 1 that the mixed model has a
greater degree of instability. The energy dissipation along analysis reduced the chaotic behavior of the truss for the
elastic-perfectly plastic model, avoiding the snap-through and decreasing the Lyapunov exponents.
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Table 1. Lyapunov Exponents for material models and time intervals

Parameter
(10−3)

Elastic
(0.5 s− 2.2 s)

Isotropic hardening
(0.5 s− 1.8 s)

Mixed-hardening
(0.8 s− 2.0 s)

Elastic-perfect-plastic
(3.0 s− 5.0 s)

Initial velocity
[m/s]

λ1 6.347 6.609 7.250 1.115 0 and 0.001

λ2[bits/s] 9.157 9.535 10.460 1.609 0 and 0.001

λ1 5.171 7.547 7.685 1.360 0 and 0.005

λ2[bits/s] 7.460 10.887 11.087 1.962 0 and 0.005
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