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Abstract. During the launch phase, satellites are subjected to intense dynamic loads. Part of these loads is due to 

acoustic excitation from the exhaust jet stream and other aerodynamic effects and part is due to different 

phenomena that originate in the launch vehicle propulsive system. The later can cause vibrations that propagate 

longitudinally along the rocket structure and can reach the satellite. This paper analyzes the influence of the effect 

of mass variation of the first stage of a launch vehicle in the longitudinal dynamic response of its payload during 

lift-off and the first phase of the flight. A discrete multi degree of freedom model was implemented to evaluate the 

longitudinal vibrations of a real launcher-satellite set when subjected to thrust oscillations. 
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1  Introduction 

Satellites go under high dynamic loading during the launch vehicle flight due to acoustic, aerodynamic and 

structural forces (Liu et al [1]). During liftoff, the most intense dynamic loads have an acoustic origin (Pirk et al 

[2]). These loads act predominantly in transverse directions to the longitudinal axis of the launch vehicle. 

Longitudinal dynamic loads originate mainly from the launcher's propulsive system. Thrust oscillations often 

occur in solid propellant rocket engines (Fabignon et al [3]) and can generate dynamic longitudinal loads in a 

launch vehicle. These loads can reach the payload and generate structural vibrations in the satellite. Take this into 

account allow engineers to design satellites strong enough to bear these loads and payload attach fairings that 

mitigate the vibrations the payload undergoes. As shown in Guimarães and Souto [4], considering the launch 

vehicle as a single rigid body can lead, in some cases, to errors in evaluating longitudinal vibrations. 

By analyzing a 4 degree of freedom mass-spring-damper model of a three-staged launch vehicle with a 

satellite, this paper aims to study the influence of 1st stage mass variation on the satellite's dynamic response to 

launcher longitudinal vibrations caused by thrust oscillations. The stage masses considered correspond to the stage 

masses of the Arianespace Vega launcher [5]. The stiffness values of the interstage structures were obtained from 

Jafari [6] and Karahalis [7]. 

2  Theory 

The matrix differential equation that models the dynamic behavior of a discrete mechanical system is shown 

in eq. (1), where [M], [C] and [K] are, respectively, the mass, damping and stiffness matrices; {x}, {𝑥}̇  and {�̈�}  are 

the masses’ displacement vector and its first and second derivatives with respect to time respectively; and {F} is 

the force vector.  

 



Template file for CILAMCE-PANACM-2021 full-length paper (double-click here to enter the short title of your paper) 

CILAMCE-PANACM-2021 
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  

Rio de Janeiro, Brazil, November 9-12, 2021 

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} = {𝐹} (1) 

For this analysis, we are considering the satellite and launch vehicle system as the model shown in Fig. 1. 

All displacements, velocities and accelerations are referred to an inertial system fixed to the ground. In this work 

the actual Vega launcher’s 4th stage was considered rigidly attached to the adapter and both treated as a single 

structural element connecting the 3rd stage (m3) to the satellite (ms). 

 

Figure 1. Model of the launch vehicle and satellite system (adapted from [5]) 

The matrices and vectors for this model are shown in eq. (2). 

[𝑀] = [

𝑚1 0 0 0
0 𝑚2 0 0
0 0 𝑚3 0
0 0 0 𝑚𝑠

] ; [𝐶] = [

𝑐1 −𝑐1 0 0
−𝑐1 𝑐1 + 𝑐2 −𝑐2 0

0 −𝑐2 𝑐2 + 𝑐3 −𝑐3

0 0 −𝑐3 𝑐3

] ; 

[𝐾] [

𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2 0

0 −𝑘2 𝑘2 + 𝑘3 −𝑘3

0 0 −𝑘3 𝑘3

] ; {𝑥} = [

𝑥1

𝑥2

𝑥3

𝑥𝑠

] ; {𝐹} = [

𝐹
0
0
0

] 

(2) 

The damping coefficients can be determined by the eq. (3), where 𝜻𝒊 is the damping ratio and 𝑖 = 1,2,3.  

𝑐𝑖 = 2𝜁𝑖√𝑚𝑖𝑘𝑖 (3) 

The force F applied to mass m1 is the thrust generated by the P80 motor. During engine burnout, the thrust 

amplitude varies relatively smoothly, but it is common for oscillations in the thrust amplitude to occur especially 
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at the beginning and end of the burn [8]. Figure 2, taken from Zhang, Q., et al [9], shows the thrust curve with 

amplitude oscillations of a solid propellant rocket engine obtained from fluid dynamics studies. 

 

Figure 2 Thrust oscillations (extracted from [9]) 

Thrust oscillations can be caused by the interaction between longitudinal acoustic modes of the engine tube, 

and the burning process inside the engine as pointed out by Zhang, Q., et al [9]. In this work we consider that the 

oscillation of the 1st stage thrust is caused by the interaction of the burning with the 1st longitudinal acoustic mode 

of the rocket engine. The thrust perturbation was considered as a sinusoidal oscillation tunned to this frequency 

and with 1000 N of amplitude. 

A solid propellant rocket engine has a closed end and an open end (the nozzle). However, in the divergent of 

the nozzle, the gas flow velocity becomes supersonic, and from an acoustic point of view, this region behaves like 

a rigid wall reflecting the sound waves Laudien [10]. Therefore, to calculate the natural frequency of the 1st 

longitudinal mode of the rocket engine, it must be considered a tube closed at both ends. According to Blevins and 

Plunkett [11], the frequency of the first longitudinal acoustic mode of a closed tube is presented in eq. (4), where 

𝑳 is the length of the cavity and 𝒄 is the sound speed. 

𝑓1 =
𝑐

2𝐿
 (4) 

To estimate the satellite (ms) acceleration response to a harmonic force applied to the 1st stage (m1) both force 

and displacement are considered varying harmonically and so the discrete system displacement and force nodal 

vectors can be written as displayed in eq. (5) where {�̅�} and {�̅�} are the amplitudes vectors of the displacement 

and force, respectively, and ω is the angular frequency of the harmonic force [12]. By combining eqs. (5) and (1) 

and differentiating with respect to time twice one obtains the acceleration response showed in eq. (6). 

{
{𝑥} = {�̅�} exp(𝑗𝜔𝑡)

{𝐹} = {�̅�} exp(𝑗𝜔𝑡)
 (5) 

 

  

{�̈�} = −𝜔2(−𝜔2[𝑀] + 𝑗𝜔[𝐶] + [𝐾])−1 {𝐹} 

 

(6) 

To estimate the satellite acceleration response to a transient excitation applied to the 1st stage (the thrust), the 

Runge-Kutta fourth-order integration method was implemented to calculate two cases: a) first stage mass varying 

without rocket thrust (i.e. only the sinusoidal perturbation force history applied on the first stage); b) first stage 

mass varying with P80-FW SRM engine vacuum thrust added to the sinusoidal perturbation force history applied 

on the first stage. The first case was chosen to show whether harmonic and transient analysis results would agree 

when varying the first stage mass over time, while the second case would show whether using a real rocket thrust 

added to the same sinusoidal perturbation force changes the response on satellite.  

The variable that is analyzed is the satellite’s response acceleration �̈�𝑠. The satellite acceleration response 

only to the sinusoidal perturbation was calculated as follows: a) the response to thrust + sinusoidal perturbation 
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was calculated; b) the response to sinusoidal perturbation was calculated; c) the response obtained in (a) was 

subtracted from that obtained in (b).  

To put the steady-state solution in the transient response graphics, the code that runs the latter also outputs 

the first stage’s mass at each moment, and thus allowing us to plot the expected steady-state response if the mass 

at each instant was kept constant.  

3  Results and discussion 

The properties of the satellite and the launch vehicle used can be found in Tab. 1. 

Table 1. Values used in the simulation 

Property Value Unit 

m1,initial 96243 Kg 

m1,final 8882 Kg 

m2 26300 Kg 

m3 12000 Kg 

m4 1228 Kg 

k1 4 × 108 N/m 

k2 1 × 108 N/m 

k3 3.8 × 107 N/m 

𝜁1 0.32 - 

𝜁2 0.32 - 

𝜁3 0.015 - 

Fperturbation 1000 N 

Burn time 109.9 s 

To get a broad view of the system’s behavior, using the steady-state solution varying the input frequency and 

the first stage mass (range within the initial and final values), the Fig. 3 was generated and shows the acceleration 

on the satellite (�̈�𝑠). The yellow color represents the mass near the initial values, and the purple represents the 

final masses, and it can be noticed that a lower the mass of the first stage always leads to a higher acceleration, 

which means that considering solely the initial mass can lead to an underestimation of the dynamic loads. 

 

Figure 3. Influence of the first stage mass on the acceleration response 
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By using eq. (4) for 𝑐 = 1080 𝑚/𝑠 and 𝐿 = 11.2 𝑚, we get a frequency of 48.2Hz, and thus this frequency 

was chosen to be used in the sinusoidal oscilation . The reponses for the three cases described above (steady-state 

and transient with and without the engine thrust), are plotted in Fig. 4. 

 

Figure 4. Response comparison for 48.2Hz perturbation 

The “Transient with thrust” curve cannot be seen in Fig. 4 because the “Transient without thrust” curve 

superposes it, and using dashed lines did not help with the visualization. Since the selected frequency makes the 

payload oscilate thousands of times in the time span presented in Fig. 4, this plot’s time span was narrowed to one 

second, between 90 and 91 seconds, to illustrate better the behavior of the system and to demostrate the 

aforementioned overlapped curve, and the Fig. 5 was generated. 

 

Figure 5. Response comparison for 48.2Hz perturbation (90 to 91 seconds) 
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By analyzing the Fig. 4, we can observe that: the steady-state for a constant initial mass is the lower bound 

of the acceleration amplitude, while using the final mass is a good estimation of the upper bound; the steady-state 

analysis present no noticeable difference when comparing to the transient curves; although this can’t be seen in 

Fig. 4, both transient forces are coincident, which can be seen in Fig. 5. 

4  Conclusions 

When the mass of the first stage decreases over time, the amplitude of the vibrational loads on the satellite 

increases, and considering solely the initial mass can lead to an underestimation of the total loads, while 

considering the final mass give a reasonable result for the maximum load. By comparing the transient response 

and the steady-state response to the sinusoidal excitation only, we can conclude that, if only the amplitude of the 

acceleration at each moment is relevant, a steady-state solution calculated using the mass at each instant is a fair 

approximation to the transient response of this system with time varying mass. Regarding both transient responses, 

the results were coincident, which it is expected since the differential equation of the system is linear, and thus an 

analysis of the behavior changes due to periodic forces can be done separately from the quasi-static forces. 
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