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Abstract. This paper investigates the effect of soil flexibility on the solution obtained by topology optimization
of a tall tower in continuous contact with the soil throughout its base. The tower is modeled with classical finite
elements, while the soil is modeled with boundary elements, which is more adequate to deal with unbounded soil
domains. Coupling between the tower and soil is established by imposing equilibrium and continuity conditions
at the soil–tower interface. The paper shows strategies for solving the different orders and types of elements at
that interface. The final equilibrium equation resulting from the coupling scheme contains the linear superposition
of the tower and soil stiffness matrices, and connects nodal forces and displacements as in classical finite element
assembly schemes. The Bi-Directional Evolutionary Structural Optimization method (BESO) is chosen to solve
the compliance minimization problem under prescribed volume constraints. The solutions for the tower resting
on the ground surface and for resting on rigid supports are compared, and the results show that both the optimal
topology of the tower and the compliance that is achievable are significantly affected by the flexibility of the soil.

Keywords: Topology optimization, Coupled methods, Soil-structure interaction.

1 Introduction

The past few decades have witnessed the rise of a wide variety of topology optimization methods. The
Solid Isotropic Material with Penalization (SIMP) [1], the Level Set Topology Optimization (LSTO) [2], the Uni-
directional Evolutionary Structural Optimization (ESO) [3] and its Bi-directional counterpart (BESO) [4], and the
Topology Optimization of Binary Structures (TOBS) [5] methods are a few examples of improvements on Bendsøe
and Kikuchi [6]’s original propositions. Applications have been explored in a wide range of problems, from
elementary elasticity [7] to multiphysics [8] and multiscale [9] problems. These, however, are strongly focused on
bounded-domain problems, which is understandable considering the practical interest in such problems.

A class of unbounded-domain problems of relevant practical interest is soil-structure interaction problems.
The flexibility of the soil and foundation has significant impact in the response of the structure they support [10],
and the literature has been sparse with regards to their effect in the topology optimization solution. The most note-
worthy results in this regard are the ESO and BESO studies of 2D and 3D excavations presented by Ren et al. [11],
Ren et al. [12], Eliáš et al. [13] and Sobótka [14]. Seitz and Grabe [15] considered optimization of buried foun-
dations on granular soils. However, the only known result to consider the effect of soil and foundation flexibility
in the topology optimization of the structure is that by Cavalcante et al. [16], which showed that the presence of
the foundation has a significant effect in both the final topology of the structure and in the achievable optimization
result. Their study, however, is limited by considering the foundation as one-dimensional piles interacting with the
structure at discrete points. The effect of continuous contact with the soil, which is common in engineering practice
and should have a more significant effect in the topology optimization of the structure, is yet to be considered in
the literature.

In this paper, we consider the problem of topology optimization of a structure in continuous contact with
the soil. The representative problem of a tall tower is selected for this analysis. The tower is modeled with
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classical finite elements, while the soil is modeled with boundary elements, which is more adequate to deal with
unbounded domains such as the soil. Coupling between the tower and soil is established by imposing equilibrium
and continuity conditions at the soil–tower interface. This process requires careful consideration of the different
orders and types of elements at that interface. The resulting equilibrium equation is written in terms of nodal
displacements and forces of the tower, and incorporates the effect of the flexibility of the soil in its stiffness matrix.
This equilibrium equation then undergoes topology optimization through classical BESO.

1.1 Problem statement

Consider a tower with initial optimization domain of sides 5a × 5a and height 15a, Young’s modulus Et

and Poisson ratio νt. Centered at the top surface of the tower, a square a× a patch is under uniformly distributed
horizontal (y−direction) and vertical (z−direction) loads. The loaded patch is a non-design domain: it is prescribed
not to be affected by the optimization procedure. The tower is in perfectly bonded contact with a homogeneous,
isotropic half-space with Young’s modulus E and Poisson ratio ν. The objective function is to minimize the
compliance of the tower under a prescribed target volume reduction. BESO is used to analyze the difference
between the optimized topologies for the cases in which the tower rests on the surface of the soil and the case in
which it rests over rigid supports.

Figure 1. Tower interacting with the soil.

2 Numerical models

2.1 Model of the structure

In this paper, the tower is modeled with classical linear-elastic 8-noded hexahedral finite elements with three
degrees of freedom per node. Nodal displacements and forces in the finite element mesh of the discretized tower
are related through

Ft = KtUt (1)

in which Ft and Ut are the vector of nodal forces and nodal displacements, and Kt is the global stiffness matrix
of the tower. Global Kt is assembled from the elemental stiffness matrices [17], given by

ke =

∫
Ve

BTDBdVe =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTDB det (J) dξdηdζ, (2)

in which Ve is the volume of the element, D is the constitutive matrix of the element, N is the matrix of linear
shape functions, B is the matrix of derivatives of the terms of N , and J is the Jacobian that relates the formulations
of the element in the physical and natural domains. For a full description of the terms involved in eq. 2, refer to
Bathe [17].
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2.2 Soil model

A boundary element framework is used to model the soil in this analysis. This framework resorts to super-
position of non-singular Green’s functions (influence functions) to obtain the displacement fields at the tower–soil
interface. The surface of the soil is discretized into M boundary elements, which is the same number of finite
elements of the mesh of the tower in the tower–soil interface. Considering the hexahedral elements used to dis-
cretize the tower, rectangular boundary elements are used in this case. Each element l is defined within the bounds
of −A ≤ x ≤ A and −B ≤ y ≤ B at the surface of the half-space (z = 0), centered at (xl, yl). The surface
traction and displacement vectors of the half-space due to normal pz and in-plane loads px and py are, respectively,
t = pxex+pyey +pzez and u = uxex+uyey +uzez . The effect of t over theM elements is measured at arbitrary
elements k, centered at (xk, yk, z = 0). Assuming constant traction distribution over the elements, Willner [18]
derived solutions for the displacement influence functions for the half-space. These solutions are based on direct
analytical integration of the Boussinesq [19] and Cerruti [20] solutions for point loads over the area of the element.
The fully-coupled displacement–traction relation is

uxk =

M∑
l=1

(cxxkl pxl + cxykl pyl + cxzkl pzl) (3)

uyk =

M∑
l=1

(cyxkl pxl + cyykl pyl + cyzkl pzl) (4)

uzk =

M∑
l=1

(czxkl pxl + czykl pyl + czzkl pzl) (5)

in which, for example,

cxxkl =
1

2πG

∫ A

−A

∫ B

−B

{
1− ν
ρkl

+
ν (xk − xl − ξ)2

ρ3kl

}
dη dξ, (6)

in whichG = 1/2E/(1+ν) is the shear modulus of the half-space, and ρkl =

√
(xk − xl − ξ)2 + (yk − yl − η)

2.
Willner [18] obtained closed-form expressions for these influence terms. In the case of cxxkl , these are

cxxkl =
1

2πG
{(1− ν) (x+A) ln (G1) + (1− ν) (x−A) ln (G2) + (y +B) ln (G3) + (y −B) ln (G4)} ,

in which

G1 =
y +B +

√
(x+A)

2
+ (y +B)

2

y −B +

√
(x+A)

2
+ (y −B)

2
,

G2 =
y −B +

√
(x−A)

2
+ (y −B)

2

y +B +

√
(x−A)

2
+ (y +B)

2
,

G3 =
x+A+

√
(x+A)

2
+ (y +B)

2

x−A+

√
(x−A)

2
+ (y +B)

2
,

G4 =
x−A+

√
(x−A)

2
+ (y −B)

2

x+A+

√
(x+A)

2
+ (y −B)

2
.

The expressions for the remaining influence terms crskl (r, s = x, y, z) in eqs. 3 to 5 can be found in [18]. For
future reference, eqs. 3 to 5 can be organized in matrix form as

u = Ut, (7)

in which U is referred to as the soil influence matrix, each term of which contains crskl .
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2.3 Coupling scheme

In this analysis, the tower is assumed to be in fully-bonded contact with the surface of the soil. Coupling under
this condition is obtained by imposing continuity and equilibrium conditions at the tower–half-space interface.
Considering that the tower and the half-space are discretized with elements of different types and orders, a careful
consideration of these differences is necessary while establishing the coupling.

The equilibrium equation for the nodes at the tower–half-space interface is a modification from eq. 1, with
the inclusion of Fs representing the vector of equivalent nodal contact forces due to the presence of the half-space
[21]:

Ft = KtUt + Fs. (8)

The distribution of the contact traction Fs is unknown. It can be approximated by piece-wise constant trac-
tions t, which are the tractions acting at the boundary elements of the half-space. Fs and t are related through

Fs = At, (9)

in which the transformation matrix A is responsible for mapping constant tractions t in each boundary element
into their nodal equivalent Fs in each finite element. The equilibrium equation then becomes

Ft = KtUt + At. (10)

Similarly, boundary element displacements (eqs. 3 to 5), which are measured at the center of each element,
have incompatible dimensions with respect to the four nodes of the finite element of the mesh of the tower. The
compatibilization is obtained through the transformation matrix D, such that

u = DUt. (11)

In view of eq. 11, the continuity condition at the tower–half-space interface yields

DUt = Ut, (12)

in which U is the influence matrix of the half-space (eq. 7). Equation 12 results from assuming the perfectly
bonded condition at the tower–half-space interface. Expressions for A and D can be directly extended from the
2D case presented by Carneiro et al. [21]. Equations 10 and 12 make up the equilibrium equation for the tower–soil
system:  Kt A

D −U

 Ut

t

 =

 Ft

0

 . (13)

2.4 Optimization method

This paper uses the classical BESO method proposed by Huang and Xie [4]. The method is used here to
minimize the compliance C = 1

2Ft
TUt of the system, subjected to V f −

∑Ne

i=1 Vixi = 0, in which Vi is the
volume of each of the Ne elements, and V f is the specified final volume of the structure.

At iteration k = 1, the initial design domain of the tower is that of Fig. 1. All elements of this initial domain
receive a design variable value xi = 1. Equation 13 is solved, which includes the flexibility of soil. Element
sensitivity

αi =

∑Ns

j=1 w (rij)α
n
j∑Ns

j=1 w (rij)
(14)

is computed for all elements, in which Ns is the number of nodes inside an arbitrarily-defined spherical domain
Ω of radius rmin centered at the center of element i, rij is the distance between node j and the center of Ω,
w (rij) = rmin − rij (j = 1 : Ns) is a weight factor, and

αn
j =

∑Nj

j=1 Viα
e
i∑Nj

j=1 Vi
, (15)

in which Nj is the number of elements in connection to j, and αe
i = ∆Ci = 1

2ue
T
i keuei is the sensitivity related

to each element. Huang and Xie [4] proposed yet another sensitivity parameter, ᾱi = 1
2

(
αk
i − α

k−1
i

)
, which is

controlled for all elements above k = 2. The change in the volume of the tower between iterations is measured by

Vk+1 = Vk (1± ρ) (16)
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in which ρ is the amount by which the volume is prescribed to change. Design variables xi are switched to 0 or
1 towards achieving Vk+1, depending on whether a prescribed sensitivity threshold is met by the element. This
iterative scheme is repeated until V f is achieved, provided that∑M

m=1 Ck−1+m −
∑M

m=1 Ck−M−m+1∑M
m=1 Ck−m+1

≤ τ (17)

is met as well, in which M is a given arbitrary integer, and τ is a small tolerance.

3 Numerical results

The present implementation has been thoroughly validated with limiting cases from the literature.
The optimization results in this section consider separately the cases in which the tower is under horizontal

(y−direction) and vertical (z−direction) loads. The tower was discretized into 625 elements in each cross section
(x − y plane) by 20 divisions along its height (z−direction), resulting in a mesh with 12,500 elements. Con-
sequently, 625 boundary elements were used to discretize the tower–half-space interface. The material properties
were selected so thatEt = 10E and νt = ν, which are reasonable values in engineering practice. The optimization
procedure considered ρ = 0.05, rmin = 1.2a, τ = 10−3, and V f = 0.25V , in which V is the initial volume of the
tower. Figure 2a shows the final optimized topology obtained for the case of tower under horizontal load. The case
of tower over rigid supports is shown for comparison in Fig. 2b. This is obtained by classical topology optimiza-
tion of the finite element mesh of the tower under imposed zero-displacement boundary conditions at the base.
The corresponding results for the tower under vertical loads is shown in Figs. 2c and 2d, for the case in which it is
supported by the soil and by rigid supports, respectively. Figure 3 shows the evolution of the compliance objective
function through the iterations of the optimization algorithm for both cases. These results are presented in terms
of the normalized compliance C∗

k = Ck/Ck=1, which normalizes the compliance of a given iteration k by that of
the first iteration (k = 1), and of the normalized volume V ∗

k = Vk/Vk=1.

Figure 2. Optimized topology for the tower under horizontal loads (a-b) and vertical loads (c-d). Figures (a) and
(c) consider soil support, while Figs. (b) and (d) consider rigid supports.

Figure 2 shows that the presence of the soil has a significant influence in the topology that is obtained by the
optimization algorithm. A feature that stands out in the comparison between soil and rigid support cases is that
the algorithm resorts to allocating more volume near the base of the tower in the soil support case than in the rigid
support case. This is due to the increased flexibility of that portion of the tower due to the presence of the soil,
which compromises the overall compliance of the tower in both loading cases. Figure 3a, on the other hand, shows
that the effect of the soil flexibility in the compliance that is achievable by the optimization algorithm is negligible
in the horizontal loading case. This shows that the optimization algorithm manages to find comparable minima for
either support case, which is achieved by the allocation of material in the more flexible parts of the structure. This
is not observed in the vertical case (Fig. 3b). In that case, both the optimized topology and the achievable minimal
compliance are starkly different between the rigid and soil support cases.
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Figure 3. Evolution of the compliance objective function through iterations for the tower under a) horizontal and
b) vertical loads.

4 Conclusions

This paper presented a study on the influence of soil flexibility in the topology optimization of a tall tower in
continuous contact with the soil. The tower and the soil were modeled via finite and boundary element schemes,
respectively. A strategy to deal with the different types and orders of elements at the tower–soil interface was
presented. Topology optimization was performed with BESO. The results showed that both the optimized topology
and the achievable optimization result may be strongly dependent on whether or not soil flexibility is taken into
consideration. This study indicates that it may not be a reasonable assumption to disregard the flexibility of the
soil in topology optimization analyses involving soil-structure interaction.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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Gauthier-Villars, 1885.
[20] J. R. Dydo and H. R. Busby. “Elasticity solutions for constant and linearly varying loads applied to a rectan-
gular surface patch on the elastic half-space”. Journal of Elasticity, vol. 38, n. 2, pp. 153–163, 1995.
[21] D. Carneiro, P. Barros, and J. Labaki. “Ground vibration attenuation performance of surface walls (submit-
ted)”. Journal of Vibration and Control, vol. 1, pp. 1–38, 2021.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021


	Introduction
	Problem statement

	Numerical models
	Model of the structure
	Soil model
	Coupling scheme
	Optimization method

	Numerical results
	Conclusions

