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Abstract. In topology optimization setting, we can cast a variety of problems into a weighted-sum of compliances
minimization. Robust design, for example, is commonly addressed in the form of a finite sum of deterministic load
cases scenarios. Another example is the optimization of structures subjected to dynamic loads using the equivalent
static load method, where a finite set of associated loads is defined according to the displacements over time. But
when the number of loads involved is high, the solution of these problems becomes extremely expensive from a
computational point of view, due to the necessity of solving one finite element problem for each of these loading
cases along the steps of the optimization algorithm to evaluate the objective function. In this context, two methods
for dimensionality reduction of the problem are presented. First, an equivalent stochastic problem to the original
one is determined, which reduces to only a few the number of necessary load cases at each step. The second
approach uses the singular-value decomposition of the matrix that gathers the different loading scenarios to reduce
the number of linear systems to be solved. The applicability of both methods to different topology optimization
scenarios is discussed, and numerical examples are proposed to compare the final topologies obtained and quantify
the reduction in the number of necessary finite element solves.

Keywords: Topology optimization, Stochastic sampling, Singular value decomposition, Sample average approach,
Equivalent static loads.

1 Introduction

When analysing real engineering structures, it is evident that in service they are not only subjected to one
deterministic loading scenario, and the effects off all possible situations must be taken into account for topology
optimization. For that, this work studies the weighted-sum compliance approach that involves the analysis of
various load cases at each step of the optimization process. However, if the number of possible loading scenarios
is elevated, as the traditional approaches require the solution of one finite element problem for each scenario
separately, the optimization process becomes extremely expensive from a computational point of view. To reduce
the cost of evaluating this sum, Zhang et al. [1, 2] proposes one equivalent associated stochastic problem, based on
the Sample Average Approximation (SAA) method (Verweij et al. [3]), that requires a smaller number of solves at
each optimization step. Moreover, other interesting approach is the one based on the Singular Value Decomposition
(SVD) of the matrix that represents the loading scenarios, presented in Tarek and Ray [4].

In this work these two existing approaches are investigated, and it is shown their application to different
topology optimization situations that can be reduced to a weighted-sum compliance formulation, with a particular
focus in the following situations:

Independent load cases. The simplest cases are structures where the different load cases scenarios of interest
that the structure can be subjected to are known. In this context, the mean compliance can be calculated directly
considering equal weights for all cases.

Time-dependent loads. Other important cases that can be treated by the weighted-sum compliance approach are
structures subjected to dynamic loads, as shown by the work of Lavôr and Pereira [5]. In these cases, one time
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discretization is proposed, the displacements for each step are computed using the Newmark-β integration method
(Clough and Penzien [6]) and the Equivalent Static Load (ESL) method (Kang et al. [7], Choi and Park [8]) is used
to calculate the equivalent forces that cause the same displacements as those obtained from the dynamics, again
for each time step. This approach means that for each displacement calculated, one equivalent load is obtained,
and the set of equivalent loads can be used as loading scenarios in topology optimization.

Random loads. Moreover, it is also possible to deal with random loads dependent on one known probability
distribution. For these problems, many realizations of the random variable associated to the random loads can be
done and the results treated as independent loading scenarios, similarly to the first case.

The objective of this work is to show through numerical examples involving different loading possibilities the
efficiency of the SAA and SVD-based methods to solve the topology optimization problem, the final topologies
obtained with each formulation, and quantify the enormous reduction in the computational cost to perform the
optimization process. Improving performance in these situations can not only result in faster algorithms, but also
allow the use of more refined meshes, better discretizations of the time-dependent loads acting over the domain,
among other changes that can improve the final result.

2 Theoretical background

In topology optimization, the objective is to find a material distribution that minimizes the objective function
inside the domain region, satisfying the imposed constraints (Bendsoe and Sigmund [9]). In this paper, the focus is
on using weighted-sum compliance based approaches (Zhang et al. [1]) to solve the topology optimization, and as
discussed previously, it is supposed that the domain is not only subjected to one deterministic load case scenario,
but to one of the situations enumerated in Section 1.

The solution of the optimization problem is based on the Solid Isotropic Material with Penalization (SIMP)
method (Bendsoe and Sigmund [9]), where one design variable ρ associated to each element of the mesh is defined,
with 0 ≤ ρ ≤ 1. ρ = 0 means that the element has no material, while ρ = 1 means that the associated element is
solid. The design variable updates are based on the Optimally Criteria (OC) method, as presented in Talischi et al.
[10].

There is one particularity when analyzing the approximation for time dependent loads: the ESL’s depends on
the stiffness of the strucure. For that, various cycles of optimization should be performed, with the first cycle based
on the stiffness of the original structure, and the followings based on the stiffness of the final topology obtained in
the last iteration, repeating this process until convergence (Lavôr and Pereira [5], Choi and Park [8]).

2.1 Mathematical formulation

The formulation for the density-based topology optimization approach involving the multiple loading scenar-
ios fi and its associated displacements ui can be expressed by eq. (1):



min C (u(ρ)) =

n∑
i=1

fTi ui (ρ) = tr
(
FTU

)
= tr

(
FTK−1F

)
s.t.:

m∑
e=1

Ve − Vmax ≤ 0

0 < ρmin ≤ ρe ≤ ρmax, e = 1, . . . ,m

with: K (ρ)ui (ρ) = fi, i = 1, . . . , n

(1)

where C (u(ρ)) is the compliance, Ve and Vmax represent the element and the maximum allowable volumes,
respectively, and ρmin and ρmax the lower and upper bounds for each component ρi of the design variables vector
ρ. K is the global stiffness matrix and m is the total number of elements in the mesh.

In the first line of eq. (1), F = [f1, f2, . . . , fn] represents the load cases scenarios matrix, where each column
represents one load case fi, and U = [u1,u2, . . . ,un] is the associated displacements matrix with each column
representing the nodal displacements associated to the load in the corespondent column inside F.

In this context, it is necessary to define the scenarios fi to be used for the optimization process according to
the studied problem. When independent load cases are applied, the mean-compliance approach can be used (Tarek
and Ray [4]), and the load cases fi defined as:
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C =
1

n

n∑
i=1

f
T

i K−1f i −→ fi =
1√
n

f i

where C represents the mean compliance and f i the i-th loading scenario applied to the structure.
But when the problem is subjected to time-dependent loads, one weighted-sum compliance can be used to

approximate the dynamic compliance using the equivalent static loads method (Kang et. al [7], Lavôr and Pereira
[5]), along with the associated loading scenarios fi for the optimization:

C(t) =

∫ tf

0

f
T
(t)u(t) dt ≈

nTime∑
i=1

ωi

(
fESL
i

)T
K−1fESL

i −→ fi =
√
ωi fESL

i

where C(t) is the dynamic compliance, f(t) represents the nodal loads and u(t) are the associated displacements,
fESL
i denotes the i-th equivalent static load, nTime the number of steps to discretize the time and ωi the numerical

integration weight.
Finally, when the structure is subjected to random loads, the expected compliance E[C] can be used to define

the load cases fi for topology optimization:

E[C] =
1

ns

n∑
i=1

f
T

i K−1f i −→ fi =
1
√
ns

f i

where f i represents the load associated to the i-th realization random variable and ns the number of samples used
in the simulation.

2.2 SAA-approach

Zhang et al. [1] define an equivalent stochastic problem that reduces the number of required solves at each
step of the optimization. For that, it is proposed to use the Hutchinson estimator (Hutchinson [11], Avron and
Toledo [12]) to estimate the trace of the objective function in the first line of eq. (1). The application of the Sample
Average Approximation (SAA) yields the result shown in eq. (2), where ξk is a random vector with entries +1 or
−1, and each value with probability of occurrence equal to 1/2, i.e.:

tr
(
FTK−1F

)
= E

[
(Fξ)

T
K−1 (Fξ)

]
= lim

ns→∞

1

ns

ns∑
k=1

(Fξk)
T

K−1 (Fξk) (2)

Then, it is possible to simulate a finite number of random vectors ξk to obtain one approximation for the
objective function at each optimization step. By this formulation, the number of solves necessary at each step is
equal to ns, the quantity of the random vector simulations. According to Zhang et al. [1], ns = 6 is typically a
good choice for 2D problems.

For numerical implementation, it is possible to define the matrix Ξ =
[
ξ1, ξ2, . . . , ξns

]
of realizations of

the random vector ξ, define the associated loads calculating F̃ = FΞ and use the result in eq. (3) to estimate the
compliance at each step of the algorithm, with f̃k representing the k-th column of F̃:

Ĉ (u(ρ)) =
1

ns

ns∑
k=1

f̃Tk K−1 (ρ) f̃k. (3)

To implement this approach in the PolyTop software (Talischi et al. [10]), the one used in the numerical
studies of this work, at each step of the optimization algorithm a new matrix Ξ is determined, and the associated
loading scenarios F̃ defined before the objective function estimation.
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2.3 SVD-approach

More recently, Tarek and Ray [4] proposed one approach based on the SVD decomposition of the loading
scenarios matrix F, defined in Section 2.1. This formulation yields the result in eq. (4), where F = UΣVT is the
SVD decomposition of matrix F, with Σ representing the singular values diagonal matrix, U the left and V the
right-singular vectors matrix, i.e.:

C (u(ρ)) = tr
(
FTK−1F

)
= tr

(
VΣUTK−1UΣVT

)
= tr

(
ΣUTK−1UΣ

)
(4)

In problems where a few number of mesh nodes are loaded, or when the loading scenarios are very correlated,
some singular values are much greater than others, in a way that the singular vectors associated to the non-dominant
singular values can be neglected for compliance calculation. Consequently, the implementation involves the com-
putation of the matrices Σ and U , the definition of the dominant singular values, and the definition of the loading
scenarios F̃ = UΣ associated to the dominant singular values. As a result, the number of necessary solves at each
step is reduced to the number of dominant singular values of F̃.

3 Numerical examples

In this section, one 2D box domain as schematized in Fig. 1, similar to the one analysed by Zhang et al. [1],
is considered. Three points are highlighted in its center, where different loading conditions can be applied. All the
results obtained in this work are based on the open source topology optimization software PolyTop (Talischi et
al. [13]), with the changes done by Lavôr and Pereira [5] to include the structure mass and damping matrices and
one Newmark-β integration routine in the original program, to calculate the dynamic displacements along time if
the problem is subjected to dynamic loads.

In all simulations, the mesh is composed of 320 × 80 equally-distributed Q4 elements, the numerical results
from the SAA-approach are averaged over five trials, the filter radius is set as R = 0.90m and the fraction of
volume is Vmax = 0.30. The continuation of the penalty parameter is run from p = 1 to 3 in steps of 0.5, and a
maximum number of 500 iterations for each value. The optimization tolerance is τopt = 10−2 and the parameters
values for the damping scheme in the SAA-approach, necessary to achieve convergence in this case, are equal to
the suggested values in Zhang et al. [1].

4L = 128 m

L

L L L

L/2

L

Parameters Symbol Value Unit

Young’s modulus E 2× 1011 Pa

Poisson’s Ratio ν 0.33 –
Domain thickness t 0.01 m

Figure 1. Schematic illustration of the considered 2D box domain, with the loaded points in the center of the image
and the parameters used in the simulations

3.1 Independent load cases

In the first analysis, 108 independent load cases of intensity f = 500N are applied, equally distributed along
the three highlighted nodes in Fig. 1. In this scenario, the objective is to reproduce the topologies from Zhang et al.
[1], where it was just used the Standard and SAA-approaches, and establish the result using SVD-based approach.
Figure 2 illustrates the applied loads and the final results obtained by each method, and Table 1 gathers all results
for this simulation.

For the standard approach, 108 solves are necessary at each step of the optimization, number that reduces
to 6 solves when the SAA-approach is applied, that is number of realizations of the Rademacher vector at each
step. In the SVD case, the load matrix F of the problem has 6 dominant singular values, i.e., with numerical value
much greater than the others. Due to this fact, only the singular vectors associated to these singular values must be
analysed, consequently only 6 solves are necessary at each step in this case, as discussed in Section 2.3.
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f1

Scenario 1

load case 1

f108

load case 108

Standard

SAA

SVD

36 load cases / point

Figure 2. Illustration of the 108 independent load cases in the box domain in the left, and final topologies obtained
by each method in the right.

Table 1. Comparison between the simulations for the independent load cases

Method n C Difference OC iterations Linear solutions Reduction

Standard 108 4.74× 10−3 – 1192 128736 –
SAA-approach 6 4.84× 10−3 2.11% 1875 11250 91.3%

SVD-approach 6 4.74× 10−3 0.00% 1192 7152 94.4%

3.2 Time-dependent loads

The second study involves three time-dependent loads applied on the three highlighted points in Fig. 1, as
illustrated by Fig. 3.

Scenario 2

f1(t)f2(t) f3(t)

f1(t)

f2(t), f3(t)

Time (s)

L
o

ad
s 

(k
N

)

Standard

SAA

SVD

Figure 3. Illustration of the box domain subjected to three time-dependent loads in the left and the final topology
obtained by all methods in the right

In this scenario, the time is discretized in steps of 0.01 s, implying in 21 ESLs to be taken into account during
the optimization process, and the weights for the ESL’s are based on the Simpson rule. Here, because of the number
of time steps, the standard approach needs to solve 21 systems to evaluate the objective function, while employing
SAA this number is reduced to 6. When analyzing the singular values of the load matrix F, only the first 2 are
dominant, implying in 2 solves at each step by this method. Table 2 illustrates the performance of all methods, and
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final topologies are also shown in Fig. 3.

Table 2. Comparison between the simulations for the time-dependent loads study

Method n C Difference OC iterations Linear solutions Reduction

Standard 21 2.467 – 715 15015 –
SAA-approach 6 2.471 0.16% 729 4374 70.9%

SVD-approach 2 2.467 0.00% 715 1430 90.5%

3.3 Random loads

In this last case, it is supposed that each one of the three highlighted nodes in Fig. 1 are subjected to 1000
independent loading scenarios of intensity f = 500N , and with angle between the load and the horizontal direction
following an uniform distribution between 0 and 2π radians, as illustrated by Fig. 4, where it is also shown the
final topology obtained by each method for the studied domain.

Scenario 3

θ

θ→ 1000 realizations of 𝒰([0,2π])

θ

θ→ 1000 realizations of 𝒰([0,2π])

θ

θ→ 1000 realizations of 𝒰([0,2π])

+

+

f

f

f

Standard

SAA

SVD

Figure 4. Illustration of the box domain subjected to random loads in the left and final topologies obtained by each
method studied in this paper in the right

This study implies in 3000 solves at each step when the standard approach is used, which is extremely
expensive. This number can be reduced to 6 when applying either the SVD and SAA-approaches, because this is
the suggested number of Rademacher vector samples in the SAA method and also the number of dominant singular
values in the SVD decomposition of matrix F. Table 3 summarizes the improvements for this case study when
applying the methods studied in this work.

Table 3. Comparison between the simulations for the random loads study

Method n C Difference OC iterations Linear solutions Reduction

Standard 3000 4.71× 10−3 – 1498 4494000 –
SAA-approach 6 4.79× 10−3 1.70% 1923 11538 99.7%

SVD-approach 6 4.71× 10−3 0.00% 1498 8988 99.8%
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4 Conclusions and perspectives

This article shows the possibility of using dimensionality reduction methods for solving topology optimiza-
tion problems with multiple loading cases. This idea is widely used in other fields of science, such as in data
analysis and signal processing. The examples presented in Section 3 show reductions from 70% to 99% in the
number of finite element problems to be solved until reach the final topologies, which is extremely interesting in
the studied context and necessary to increase computational performance of the algorithms.

Although the SVD-decomposition reduced significantly the number of necessary load cases at each step in
the studied context, according to Tarek and Ray [4], if the loading scenarios are not highly correlated, the existence
of only a few dominant singular values of matrix F may not happen. For that, it would be interesting in a future
work to investigate the combination of both approaches to simplify the cost to perform topology optimization:
first, use the SVD-approach to reduce the number of load cases, and then apply the SAA-approach to the resulting
loading scenarios from SVD.
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