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Abstract. One challenging scientific problem in Topology Optimization (TO) is how to set its framework to ac-
count for different physics, such as acoustics. In this case, the dynamic acoustic pressure oscillations and numerical
issues when interpolating acoustic and solid material properties become a burden. In this paper, we first investigate
the use of Topology Optimization of Binary Structures with Geometry Trimming (TOBS-GT) for solving acoustic
problems. The governing equations are solved via the Finite Element Method and sensitivities are computed with
the adjoint method by using automatic differentiation. In order to verify the proposed methodology, a 2D acoustic
problem was investigated. The objective is to minimize the average sound pressure level on a certain part of a
2D rectangular room by trimming out the design domain along the ceiling. The obtained results are similar to the
ones found in the literature solved with different TO methods. The potential advantages here are obtaining designs
without gray scale and with well-defined boundaries. This indicates that the TOBS-GT approach is a promising
tool for solving acoustic problems.
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1 Introduction

Topology Optimization is a computational tool developed in the late eighties by Bendsøe and Kikuchi [1],
which is used to provide an optimal geometry design for a given physical problem. The idea is to distribute material
within a defined domain by fulfilling prescribed constraints in order to optimize an objective function. The final
goal is to obtain a set of binary {0, 1} pseudo-densities, also called design variables, where usually 0 means the
absence of material (void) and 1 represents the presence of solid material.

Despite the outstanding achievements of TO during the last couple decades, several problems are still in
development, the acoustics field being one of them, as TO only began to be extended to acoustic problems in the
2000s. Sigmund and Jensen [2] present various results of applying topology optimization to structures and devices
that are subjected to acoustic waves. Duhring et al. [3] developed a method for the optimization of both room
acoustics and noise barriers, while Wadbro and Berggren [4] applied TO to an acoustic horn.

One challenge in TO is how to obtain the final structural layout represented by a binary design, which can
be of great relevance for problems where explicit boundary description is important, as acoustics. In the matter of
acoustics, the material interpolation is inverted from the original structural TO, with 0 meaning a solid region and
1 indicating the existence of an acoustic fluid. One common approach is to relax the binary constraint by allowing
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intermediate design variables (between solid and acoustic fluid), as done so in the Solid Isotropic Material with
Penalization (SIMP) method. In this case, some techniques were proposed to reduce or eliminate intermediate
density (gray scale) elements in the final solutions, such as projection methods. Another approach consists of
boundary-description based methods, e.g. the level-set method (LSM), in which an implicit function is used to
describe the structure with clearly defined boundaries, with the disadvantage of the final solution being strongly
affected by the initial design configuration. This method was recently used in the work of by Noguchi and Yamada
[5] for two-layered acoustic metasurfaces .

A different way of approaching the problem is the use of discrete TO methods, with Bi-directional Evolu-
tionary Structural Optimization (BESO), initially proposed by Xie and Steven [6], being the most established one.
BESO consists in the update of the design variables as a fixed change in volume fraction every iteration, with the
disadvantage of not being based on mathematical optimization, thus not guaranteeing each iteration as an optimal
step.

Within this context, Sivapuram and Picelli [7] proposed a binary method solved with formal mathematical
programming (TOBS). This paper investigates the use of TOBS with a geometry trimming technique (TOBS-GT)
for acoustic problems, which is the first method to trim out the solid region of the acoustics topology optimization
and to use only the acoustic domain in the analysis. Consequently, there is no vibration in the “rigid” solid.
This method does not need continuation schemes as {0, 1} solutions are always obtained due to the use of binary
variables.

The model studied in this paper pursues a noise reduction in a certain part of a room. This type of problem is
relevant for many applications where the construction of acoustically better environments is desirable, as industrial
machinery noise control in closed spaces, reducing engine noise in car cabins and so on.

The remainder of this paper is organized as follows. Section 2 describes the acoustic model governed by
Helmholtz equation. In Section 3 the TOBS method with geometry trimming is outlined. Section 4 presents and
discusses numerical results and Section 5 concludes the paper.

2 Acoustic Analysis

The model adopted was inspired by the work of Duhring et al. [3] and is illustrated in Fig. 1. The room is
described by a domain Ω initially filled with air. Sinusoidal sound waves of angular frequency ω are emitted from a
source that is vibrating with volume velocityQS . The governing equation for steady-state linear acoustic problems
with sinusoidal sound waves is the Helmholtz equation [8]

∇ · (ρ−1∇p̂) + ω2K−1p̂ = 0, (1)

where p̂ is the complex sound pressure amplitude, ρ is the density, K is the bulk modulus of the acoustic medium
and they all depend on the position r. The aim is to find the optimal solid material distribution in the ceiling (Ωd).
The appearance of the material parameters in their inverse form in eq. (1) motivated the choice of interpolating the
inverse density and bulk modulus linearly as

ρ−1 = ρ−1
2 + θp(ρ

−1
1 − ρ

−1
2 ),

K−1 = K−1
2 + θp(K

−1
1 −K−1

2 ).
(2)

Here ρ1 = 1.204 kg/m3 and K1 = 141.921 kPa are the properties of air while ρ2 and K2 are the properties of a
solid material, which are arbitrarily chosen values (e.g. aluminum properties). The properties of the rigid material
are not relevant, as in TOBS-GT it is trimmed out of the domain, as it will be further explained in section 3.3. The
design variable θ is introduced to control these properties, such that it represents a solid material when it is equal
to zero, and air when it is equal to one. This variable θ is penalized with SIMP as

θp = θmin + (1− θmin)θp, (3)

with θmin = 0.001 and p = 3. The boundary conditions are a point source at r0 with volume velocity QS and a
perfectly reflecting surface in the rigid walls of the room, respectively

∇ · (ρ−1∇p̂) + ω2K−1p̂ = −iωQsδ(r − r0), n · (ρ−1∇p̂) = 0. (4)
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Here n is the normal unit vector pointing out of the domain. Finite element analysis is used to solve the problem.

Figure 1. Dimensions of the rectangular room in 2D with design domain Ωd, output domain Ωop and a point source
with volume velocity QS .

3 Topology Optimization Framework

3.1 Optimization Formulation

The goal of the topology optimization is to find the optimal material distribution in the design domain Ωd
(the ceiling of the room) that satisfies the prescribed volume constraint and minimizes objective function Φ, which
is the average of the Sound Pressure Level (SPL) in the output domain Ωop.The sound pressure level is given by

SPL = 20 log

(
prms
pref

)
, (5)

where pref = 20µ Pa is the pressure reference for air and prms is the root mean square pressure. Under those
circumstances the formulation of the optimization problem takes the form

Minimize
θ

Φ(r, θ(r)) =
1∫

Ωop
dr

∫
Ωop

SPL dr,

Subject to V (θ) ≥ V ,
θ ∈ {0, 1},

(6)

where V (θ) is the air volume fraction in the design domain and V is its constrained value.

3.2 TOBS Method

The TOBS method, first proposed by Sivapuram and Picelli [9] in 2018, was formulated in order to align the
use of binary design variables with formal mathematical programming. An overview of the method will be given
within this section. General topology optimization problems are highly nonlinear and nonconvex, therefore the
method proposes the use of sequential approximation of the optimization problem. In this case we use sequential
linearization of the objective and constraint functions. Considering a Taylor’s series expansion and truncating its
first term (linear part) and representing the design variable in its discrete form as θ, the objective function and
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volume constraint can be expressed as follows, for the optimization iteration n,

Φ(θ) ≈ Φ(θn) +
dΦ(θn)

dθ
·∆θn +O(

∣∣∣∣∆θn
∣∣∣∣2

2
),

V (θ) ≈ V (θn) +
dV (θn)

dθ
·∆θn +O(

∣∣∣∣∆θn
∣∣∣∣2

2
),

(7)

where the truncation error is given asO(
∣∣∣∣∆θn

∣∣∣∣2
2
), and ∆θn is the vector that represents the changes in the design

variable. These changes should be restricted in order to keep the design variable with integer (i.e., binary) values.
For example, by considering an element that contains a solid material (θj = 0), the changes in the design variable
can be restricted as ∆θj ∈ {0, 1}, meaning that this element may either turn into air (θj = 1) or keep its value
(θj = 0) in the optimization iteration. The same procedure is analogous for an element that contains air (θj = 1).
The bound constraints for ∆θj can then be expressed as,{

0 ≤ ∆θnj ≤ 1 if θnj = 0,
−1 ≤ ∆θnj ≤ 0 if θnj = 1,

(8)

or, in a unified form,
∆θnj ∈ {−θnj , 1− θnj }, (9)

where ∆θnj ∈ {−1, 0, 1}. In order to maintain the linear approximation from eq. (7) valid, the truncation error

O(
∣∣∣∣∆θn

∣∣∣∣2
2
) should be reasonably small. One can control the truncation error by∣∣∣∣∆θn

∣∣∣∣
1
≤ βNd. (10)

Here β is an additional constraint added to the subproblem to restrict the the number of elements that may turn from
air to solid and vice-versa is to a fraction of the total number of elements (Nd), thus maintaining the truncation
error small. By considering the sequential linear approximations from Eq. (7), and the extra constraints from
eq. (9) and eq. (10), one can write the approximate integer linear subproblem as

Minimize
∆θk

dΦ(θn)

dθ
·∆θn,

Subject to
dVθ(θ

n)

dθ
·∆θn ≥ V − Vθ

(
θn
)

:= ∆V kθ ,∣∣∣∣∆θn
∣∣∣∣

1
≤ βNd,

∆θnj ∈ {−θnj , 1− θnj }, j ∈ [1, Nd].

(11)

While the truncation error constraint (eq. (10)) restrains the topology from undergoing great changes, this
might lead to infeasibility of some of the constraints Vi in the current iteration n, when the bound ∆V nθ = V −
Vθ
(
θn
)

is used. This undesirable effect may be avoided by modifying the bound of the constraint (∆V nθ ). This
approach also helps in generating feasible subproblems when the initial guess of the design variable is distant from
feasibility. Therefore, the constraint bounds are modified by considering

∆V nθ =


−εVθ

(
θn
)

: V < (1− ε)Vθ
(
θn
)
,

V − Vθ
(
θn
)

: V ∈ [(1− ε)Vθ
(
θn
)
, (1 + ε)Vθ

(
θn
)
],

εVθ
(
θn
)

: V > (1 + ε)Vθ
(
θn
)
,

(12)

where ε is the relaxation parameter corresponding to the constraint given by Vθ.
The integer optimization subproblems generated by using sequential linearizations (Eq. (11)) can be solved

through Integer Linear Programming (ILP), which is essentially the same as a Linear Programming (LP) problem,
but imposing additional constraints to ensure that the design variables can only achieve integer values. It is also a
naturally understandable choise, since we aim to achieve a binary {0, 1} solution. In this work, the ILP problem
is solved by using the branch-and-bound algorithm from the CPLEX® optimization library, which is developed
by IBM® . The branch-and-bound method consists of an algorithm based on a tree data structure, in which the
ILP problem is first solved without any integer constraints (by using a linear optimization technique such as the
Simplex method); then, branches of LPs are created with additional inequality constraints being imposed on the
design variables in order for the solution to be yielded as integer (Land and Doig [10], Vanderbei [11]).
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3.3 Geometry trimming and meshing

The proposed methodology is based on the decoupling of the optimization grid and the FEA mesh. The
process is illustrated in Fig. 2. The acoustic and sensitivity analyses are carried out using COMSOL Multiphysics® .

Figure 2. TOBS-GT procedure.

First, a CAD file is created with the analysis domain. The geometry is then freely meshed by using the op-
tion physics controlled in COMSOL Multiphysics® . The option takes into account some built-in physics
requirements when meshing. The forward and adjoint problems are solved, computing acoustic pressures and sen-
sitivities. These entities are computed using nodal variables at the finite element software. The sensitivities are
obtained via automatic differentiation. After that, optimization grid is created and the sensitivities are interpolated
at the TOBS optimization points. The finite element shape functions can be used to interpolate the sensitivities at
such points. Standard spatial filtering is applied at the sensitivities defined at the optimization grid as suggested by
Picelli et al. [12]. The TOBS-ILP solver is then used to find a new set of binary design variable values. The new
topology is then used at the next iteration.

Besides the analysis domain, the contours of the holes defined by the binary variables are saved as .dxf and
provided to the FEA package. A new CAD file can be created by trimming out the holes from the analysis domain.
This is carried in the geometry building section from COMSOL Multiphysics® with the command difference.
In this way, the modeled solid regions are not considered in the simulation. This procedure eliminates the influence
of the emulated solid, which is not actually truly solid in the standard density-based approaches. Another benefit
of decoupling the optimization variables and the FEA is that the optimization grid can be refined in order to obtain
crispier topologies while the FEA mesh can be maintained in a certain size with a reasonable computational cost.

4 Numerical Results

The average of the sound pressure level is minimized in the output domain Ωop by distributing material in
the design domain Ωd in the rectangular room represented in Fig. 1. The initial design is a domain filled with air
(θ = 1) and volume restriction chosen was V (θ) ≥ 0.85. The parameters used were r = 0.3 m, ε = 0.02 and
β = 0.03. The optimization is performed to a single frequency f = 34.56 Hz, which is close to a natural frequency
for the initial design. The optimization grid was set to 720× 40 elements.

The optimized design was found in 24 iterations and the objective function was reduced from 104.91 to 85.71
dB as can be observed in Fig. 3. Figure 4 shows the SPL for the inital and optimized designs, making it clear that
the material distributed in the ceiling is influencing the SPL in the room, such that it has a lower value in the output
domain, with a nodal line going through it.
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Figure 3. Topology optimization convergence.

(a) Initial Design (b) Final Design

Figure 4. Sound Pressure Level plots in dB.

In Fig. 5 we have a comparison between the frequency response for the initial and optimized designs, where
the SPL is plotted as a function of the frequency ω. It became evident that the natural frequencies, included the
one used as the driving frequency for the optimization, changed to a lower value.

Figure 5. Frequency response comparison for the initial and optimized designs, with the chosen frequency for the
optimization marked in the vertical red line.
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5 Conclusions

In this paper it was shown that TOBS-GT can be employed to minimize the average of the SPL in a part of a
room in 2D. The obtained results are similar to the ones found in the literature solved with different TO methods.
The potential advantages here are obtaining designs without gray scale and with well-defined boundaries. This
indicates that the TOBS method with the geometry trimming approach is a promising tool for solving acoustic
problems. Ongoing work should aim to reduce the oscillations in the optimization.
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