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1Departamento de Matemática Aplicada, Universidade Estadual de Campinas
Rua Sérgio Buarque de Holanda, 651 13083-859, Campinas, SP, Brasil
g168633@dac.unicamp.br, sasantos@unicamp.br

Abstract. This work addresses level-set based methods for structural topology optimization. Compact support C2-
Wendland radial-based functions are employed to parameterize the level sets. Structures are assumed to be in static
equilibrium, under plane stress state and built with isotropic linear elastic materials, and the classical compliance
minimization problem is considered. Aiming to save the computational effort of the potentially large number of
linear systems to be solved, the computational linear algebra of the resulting sparse interpolation matrix is explored
in contrast with the use of classic multiquadric radial basis functions, with dense matrices in the related systems.
Implementation is made in Python using the FEniCS project for the resolution of the equilibrium system and
the sensitivity analysis, based on a recent work of Laurain, that uses direct numerical resolution of the Hamilton-
Jacobi equation for the level set update. Both strategies are, therefore, compared. Additionally, our approach is
put into perspective with the radial basis function parameterization Matlab code of Wei et al. Numerical results
of experiments with classical benchmark problems are presented.

Keywords: Topology Optimization, level sets, radial basis functions.

1 Introduction

Introduced by Osher and Sethian [1], level-set based methods rest upon numerical algorithms for comput-
ing approximated solutions for the Hamilton-Jacobi partial differential equation (PDE). To cope with the intrinsic
limitations associated with mesh refinement, several alternatives have been proposed for structural topology opti-
mization (see e.g. [2] and references therein).

As highlighted in the survey of van Dijk et al., three general features distinguish the level-set topology op-
timization strategies: the parameterization of the level-set function; the mechanical model, and the optimization
strategy. Based on radial basis functions, smooth parameterizations have been developed (cf. [3–5]). Among the
most popular choices are the multiquadrics functions. Nevertheless, the compact support Wendland functions may
show computational advantage as far as memory and time savings, and this is the choice of this work. Concerning
the mechanical model, we have based the geometry mapping upon the ersatz material distribution within the finite
element analysis, and the structural model involves linear elasticity. To accomplish the optimization strategy, the
sensitivities have been updated by means of the Hilbertian extension (cf. [6, 7]) and an augmented Lagrangian
scheme has been adopted, with a consistent updating of the related elements (cf. [8]).

2 The problem formulation

The structures considered in this work are assumed to be under plane stress state and therefore can be treated
as two-dimensional [9]. Since we are interested in determining the optimum topology and geometry of a structure,
the optimization variable of the problem is a set of R2. Let us consider a reference domainD = [0, lx]×[0, ly] ⊂ R2

and P(D) the set of its subsets. Then, each design domain considered is a set Ω ∈ P(D), assumed to be in static
equilibrium. Boundary conditions such as the external traction and support region are defined for the reference
and design domain, as illustrated and described in Figure 1. Static equilibrium state can then be formulated as the
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following boundary value problem 
∇ · σ(x) = −f , x ∈ Ω,

u(x) = 0, x ∈ ΓD,

σ(x) · n̂ = g, x ∈ ΓN ,

(1)

where u denotes the displacement vector, σ(x) = Ae(u) denotes the stress, being A the material stiffness tensor,
and e(u) = (Ju + JuT )/2 the linearized strain, with Jacobian J . In specific, we consider structures built
with isotropic materials, so that the fourth order tensor A can be expressed in terms of the Lamé constants and
σ(x) = µe(u) + λ∇ ·uI . This problem can be solved using finite element analysis and therefore it is convenient
to rewrite this problem in variational form. Let V = {v ∈ (H1(Ω))2 : v = 0 em ΓD} be the set of admissible
displacements. Following [10], the problem of eq. (1) can be expressed as finding u ∈ V that satisfies

a(u,v) = l(v), ∀ v ∈ V, (2)

in which we define a : V× V→ R and l : V→ R by means of

a(u,v) :=

∫
Ω

A e(u) : e(v) dx, l(v) :=

∫
ΓN

v · g ds+

∫
Ω

f · v dx . (3)

The solution u of this boundary value problem is the displacement that the structure suffers once submitted to the
given conditions. Once u has been obtained, the compliance of the structure is defined as J(Ω) = a(u,u) = l(u).
The optimization problem we consider can then be formulated as

minimizeΩ J(Ω)

subject to C(Ω) ≤ 0, Ω ∈ P(D),
(4)

where, given a prescribed volume fraction V , we define the volume constraint as C(Ω) = V (Ω) − V , with
V (Ω) = 1

lxly

∫
Ω
dx.

Figure 1. Reference domain D (left), example of design domain Ω ∈ P(D) (right) and associated boundary
conditions. Boundary ∂D is divided in three disjoints parts: ∂D = ∂DD ∪ ∂DN ∪ ∂D0, in which ∂DD refers to
the homogeneous Dirichlet condition; ∂DN denotes the non-homogeneous Neumann condition, and ∂D0 denotes
the homogeneous Neumann condition. As for the boundary ∂Ω, we have ∂Ω = ΓD ∪ ΓN , with ΓD ⊂ ∂DD and
ΓN = Γ0 ∪ ∂DN .

For the implementation, we consider the unconstrained problem of minimizing the following augmented
Lagrangian cost functional [11]

Lρ(Ω,Λ) = J(Ω) +
ρ

2
(max{0, C(Ω) + Λ/ρ})2

, (5)

in which Λ ∈ R+ denotes the Lagrange multiplier, and ρ > 0 is the penalty parameter. Also, we consider an ersatz
material approach, which means that we assume that D\Ω is treated as a weak phase, filled with material with
elasticity tensor εA, where ε is a fixed small parameter. Then, the problems of eq. (1) and eq. (2) can be extended
to the reference domain D [7, 12]. It is important to observe that the static equilibrium of the structure is often
written as an equality constrain, since it must be always satisfied. In practice, however, the equilibrium is primarily
imposed for each generated structure, and only the volume restriction is treated as a constraint.

3 Parameterized level set approach

In contrast with methods that rely on an explicit parameterization of the design domain, in level set methods,
the geometry and topology are represented implicitly as the zero level set of a higher dimensional function, as
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illustrated in Figure 2. According with [13], such methods are characterized when dynamics is added to the level
set function by allowing it to vary along a fictitious time. Defining φ : D × R+ 7→ R as the level set function
(LSF), we will assume the following convention

φ(x, t) > 0 ⇐⇒ x ∈ Ω ∩D,
φ(x, t) = 0 ⇐⇒ x ∈ ∂Ω ∩D,
φ(x, t) < 0 ⇐⇒ x ∈ D\(Ω ∪ ∂Ω),

(6)

Therefore, for each fixed t, the domain Ωt and its boundary ∂Ωt can be determined as Ωt = {x ∈ D : φ(x, t) > 0}
and ∂Ωt = {x ∈ D : φ(x, t) = 0}, respectively. Assuming that ∂Ωt can be parameterized as a curve x(t), then
this curve satisfies φ(x(t), t) = 0. The boundary movement along time can thus be obtained by taking the time
derivative, which by the chain rule leads to the Hamilton-Jacobi (HJ) Equation

∂tφ(x(t), t) + υ(x(t), t) · ∇φ(x(t), t) = 0, for (x(t), t) in ∂Ωt × R+. (7)

Figure 2. Implicit representation of a domain and normal vector orientation.

The term υ(x(t), t) := x′(t) denotes the boundary velocity field. Furthermore, if υn and υt denote the
normal and tangent components of this field, respectively, then, since the unit outward normal vector to ∂Ωt can
be written as n̂ = − ∇φ

‖∇φ‖ and t̂ and ∇φ are orthogonal, we obtain an equivalent expression that involves only
the normal component of the field

∂tφ(x(t), t)− υn(x(t), t)‖∇φ(x(t), t)‖ = 0, for (x(t), t) in ∂Ωt × R+. (8)

If the velocity field or its normal component are extended to the reference domain, then equations (8) and (9) may
be written for all x in D and can be used to update the level set equation and, therefore, the design domain. This
characterizes conventional level set methods and finite difference schemes such as upwind differencing can be used
for solving the PDE and updating the nodal values of the LSF [7, 13, 14]. On the other hand, on the parameterized
level set method adopted here, the LSF is considered to be a linear combination of spatially fixed basis functions.
In specific, we will consider radial basis functions (RBF’s). Two basic procedures need then to be defined: the
initialization of the parameters and their evolution. Both will be made following the strategy proposed by [3, 5],
as summarized next.

Let Σ = {ξ(i) = (x
(i)
1 , x

(i)
2 ), i = 1, . . . , N} ⊂ D be a discretization of the reference domain. Then,

R(‖x − ξ(i)‖) denotes an RBF centered in ξ(i). Assuming that the basis functions are fixed during the evolution
process, we define the parameterized level set function (PLSF) as s : D × R+ 7→ R that satisfies

s(x, t) = r(x)
ᵀ
α(t) =

N∑
i=1

αi(t)R(‖x− ξ(i)‖). (9)

For the parameters initialization, we assume that nodal values φi of the level set are known at each point ξ(i).
Then, α(0) is the solution of the interpolation problem s(ξ(i)) = φi for i = 1, . . . , N. In matrix form, this can be
expressed as Gα = Φ, in which gij = R(‖ξ(i) − ξ(j)‖), i, j = 1, . . . , N and Φ = (φ1, . . . , φN ). Non singularity
of G depends on the type of RBF chosen. In [5], authors work mainly with multiquadrics (MQ), for which a
first-degree polynomial term is added to eq. (9) to ensure positive definiteness [15]. In this work we consider
C2-Wendland’s compactly supported (CS) RBF, defined as

RCS(‖x− ξ‖) = (max(0, 1− r(x)))4(4r(x) + 1), r(x) =
1

dsp

√
‖x− ξ‖2 + c2, (10)
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where c is a small shape parameter and dsp is the radius of support. In contrast with multiquadric RBF, this choice
leads to banded interpolation matrices with bandwidth depending directly on dsp, as shown in Figure 3.
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Figure 3. Example with a 5 × 5 square mesh (left) and the structure of the interpolation matrices associated,
respectively, with a CS-RBF with dsp = 1.5∆x (where ∆x is the element size) – (center) and MQ-RBF’s (right).

To express the evolution of the PLSF, we may evaluate expression (9) by either eq. (7) or eq. (8). In this
work, we consider the latter, which results in

r(x)
ᵀ
α′(t) + υn(x(t), t)‖Jr(x)ᵀα(t)‖ = 0. (11)

By evaluating this expression in each knot ξ(i), which can be considered a collocation formulation of the general
method of lines [3], we obtain a set of N ordinary differential equations (ODE) on t which can be written in
matrix form as Gα′(t) = B(α, t) by defining the j-th component of the right-hand side vector as Bj(α, t) =

υn(ξ(j), t)‖Jr(ξ(j))
ᵀ
α(t)‖, j = 1, . . . , N . This ODE system can be solved using a first-order forward Euler’s

method, which gives
α(k+1) = α(k) + ∆tG−1B(α(k), t). (12)

This means that for each evolution step, a linear system involving G must be solved and therefore, the sparsity
inherent of the CS-RBF’s is valuable for saving computational effort. Moreover, since knots are fixed, this matrix
is constant and computational linear algebra can be explored. Additionally, implementation of the gradient term
on eq. (12) can be done easily due to the parameterization and in the particular case of CS-RBF’s, using sparse
matrices. We also consider the approximate re-initialization scheme and the delta function as used by Wei et al.
[5] to prevent the LSF to becoming too flat or too steep and to avoid unbounded growth of the LSF.

Choosing the velocity field and extending it appropriately is a key point for the optimization scheme, since
we need the motion of the PLSF to be towards a minimizer of the cost functional. In finite dimension, it is known
that one classical way of obtaining a descent direction is to take (minus) the gradient of the cost function - the
steepest descent direction [16]. An analogous approach can be considered by taking the shape derivative of the
cost functional (5), which can be defined in terms of the concept of Frechét differentiability of an application.
Following [12], let us denote as dLρ(Ω,Λ;θ) the shape derivative of Lρ in direction θ ∈ W 1,∞(R2,R2). Since
this differential operator is a linear and the chain rule applies [17, §7.3], the shape derivative of eq. (5) can then be
computed based on dJ(Ω,θ) [12, Theorem 7] and dV (Ω,θ) [12, Remark 6] and results in

dLρ(Ω,Λ;θ) =

∫
Γ0

Gθ · n̂ds, with G = −Ae(u) : e(u) +
ρ

lxly
max{0, C(Ω) + Λ/ρ}. (13)

Since the evolution scheme proposed requires only the normal component of the field υ (cf. eq. (11)), we con-
sider the Hilbertian extension approach proposed by Gournay [6], which consists in solving the scalar variational
problem of finding θ ∈ H1(D) that satisfies

〈θ, β〉H1(D) = −dLρ(Ω,Λ;βn̂), ∀β ∈ H1(D), where 〈θ, β〉H1(D) =

∫
D

(a∇θ · ∇β + θ β) dx, (14)

being 〈·, ·〉H1(D) an inner product on H1(D) and a ∈ R+ the extension-regularization parameter. Then, since
dLρ(Ω,Λ, θn̂) = −〈θ, θ〉H1(D) < 0, υn = θ/‖θ‖H1(D) is a descent direction. As shown in [6], this choice results
in a more regular velocity field than the one defined by the natural extension method, considered by Wei et al.
[5]. Our choice is also facilitated by FEniCS and it is similar to Laurain’s [7], that considered the distributed
expression of the shape derivative and works with eq. (7) instead of eq. (8). Discussion on different extension
procedures can be followed on the review article of Dijk et al. [2].
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The optimization scheme adopted is summarized in Algorithm 1. In contrast with the approach of Wei et
al. [5], the main differentials of our work are the cost functional definition, the augmented Lagrangian scheme
adopted and the choice of the velocity field. On the other hand, from Laurain [7] we inherit details on the solution
of PDE’s and constrast our parameterized approach with the direct resolution of the HJ equation adopted by the
author.

Algorithm 1: Parameterized level set (PLS) topology optimization algorithm

Input: mesh size, volume fraction, initial design domain Ω0, initial parameters Λ0, ρ0.
Solve interpolation problem for initial coefficients α.
for k = 0, . . . , until convergence do

Step 1: Solve linear elasticity system (eq. (1)) for Ωk and evaluate cost functional Lρk(Ωk,Λk).
Step 2: Solve variational problem (eq. (14)) to obtain velocity field θn.
Step 3: Evolve α according to equation eq. (12).
Step 4: Update Lagrange multiplier Λk+1 and penalty parameter ρk+1.

end

4 Numerical experiments

We have prepared a Python implementation of Algorithm 1. This section contains some preliminary results
on two benchmark examples, the symmetric and asymmetric cantilever beam. For the solution of PDE’s using
finite elements (Steps 1 and 2 of Algorithm 1), FEniCS project (https://FEniCSproject.org/) was the
choice. All the experiments were run in a DELL Inspiron 5584 notebook, Intel Core i7-8565U processor clocked at
1.80GHz, 8GB RAM (64-bit), using Python Version 3.8.5 and FEniCS Version 2019.2.0.dev0. For sparse matrix
operations, library Scipy was used along with UMFPACK routines for linear systems. Additionally, Matlab
Version R2019b was used to run the code provided by Wei et al. [5], for comparative purposes.

We consider lx = 2 and ly = 1 for the working domain D and a unit force traction vertically loaded at
(lx, ly/2) for the symmetric case and at (lx, 0) for the asymmetric case. The material’s Young modulus and
Poisson’s ratio were set to E = 1 and ν = 0.3 and ε = 10−9 was considered for the ersatz material approach.
Also, we consider a prescribed volume fraction of 50% and the level set is initialized as suggested by Wei et al.
[5, §3.1], except for a scale factor to adjust to our normalized design domain (cf. Fig. 5 - Experiment I-a). As for
the augmented Lagrangian scheme, we consider Λ0 = 30, ρ0 = 2.0, ρmax = 5 × 103 and refer to [8, Algorithm
4.1] for details on the updating. Following the book’s notation, we set γ = 1.1 and τ = 0.9. For the inner product
of eq. (14), we have considered a = 0.0005

√
5, where

√
5 corresponds to the diameter of the working domain.

Experiments with different mesh sizes (Nx, Ny) were performed with the only restriction that Nx/lx = Ny/ly,
so each element is a square. For the finite element analysis, the mesh is refined by partitioning each square by its
diagonal into four equal triangular elements and we refer to Laurain [7, §6.2–§6.5] for details.

Figure 4. Cantilever beams: symmetric (left) and asymmetric (right), with associated boundary conditions.

We have first considered the symmetric cantilever beam and compared our results with the ones obtained with
the codes of Wei et al. [5] and Laurain [7]. For consistency, we use the same initialization adopted in each work,
with a 150 × 75 mesh for the former (Experiment I-a) and 120 × 60 for the latter (Experiment I-b). Laurain’s
code attained fraction of volume of 0.5423 and compliance of 51.88, with 79 iterations (see [7, Fig. 3(a)]). The
88-line Matlab code, with their provided modification to run the CS-RBF took 74 iterations to obtain fraction
of volume of 0.5003 and compliance of 6.00E+5; whereas, with the discretization 60 × 30, it achieved fraction
of volume of 0.5004 and compliance of 5.98E+5 with 88 iterations, and a structure qualitatively more similar to
ours [5, Fig. 14(a)]). The CS-RBF parameters are fixed as c = 10−4 and dsp = 2∆x. Our convergence check
is the same of [7], with relative tolerance of 0.5%, and variation of the eight previous iterations. The results are
illustrated in Fig. 5, and detailed in Table 1. The initialization used for Experiment I-b is the default considered
for our code and for this specific case, the evolution of the optimization parameters are depicted in Fig. 6. For the
Experiment II, we consider the asymmetric cantilever beam and contrast the performance obtained with different
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values of dsp for the CS-RBF. Results are illustrated in Fig. 7 and described on Table 1. In both cases, our runs
demanded fewer iterations than the counterparts, what is consistent with Gournay [6], but not as stringent as his
results. Nevertheless, better calibration of the stopping condition might avoid the nonregular boundaries of Fig. 7.

Figure 5. Results obtained on Experiment I-a (first row) and I-b (second row). Images refer to LSF initialization
(first column); final design obtained by reference works (second column – [7] (top) and [5] (bottom)), and design
evolution obtained by our code with corresponding initialization and same mesh (third column).
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Figure 6. Problem elements (left) and augmented Lagrangian parameters (right) associated with Experiment I-b.

Figure 7. Design domain evolution with dsp = 2∆x (left), dsp = 4∆x (center) and dsp = 6∆x (right)

Table 1. Quantitative results of Experiments I and II.

Experiment I Experiment II

I-a I-b dsp = 2∆x dsp = 4∆x dsp = 6∆x

Iterations 58 60 61 59 64
Fraction of volume 0.4997 0.5002 0.4986 0.5012 0.4990

Compliance 66.37 66.79 76.94 76.50 76.47
Functional cost 66.34 66.82 76.79 76.62 76.36
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5 Final remarks

Motivated by the works of Wei et al. [5] and Laurain [7], the contributions of this study are threefold: (i) en-
hancement of the compatibility of an augmented Lagrangian scheme within the cost functional of the PLS algo-
rithm for topology optimization; (ii) extension of the velocity field by the Hilbertian approach, alternatively to the
natural strategy; (iii) implementation in Python, employing resources of the FEniCS project, of the PLS-based
on C2-Wendland RBF’s algorithm.

Despite preliminary, our numerical results reveal significant features of the adopted combination of elements,
aiming at saving computational effort. For future experimentation, the study of Luo et al. [18] may be valuable
concerning the choice of the radius of support of the RBF’s. With respect to the Hilbertian extension of the
velocity, we have observed a strong influence of the extension-regularization parameter. Its trade-off capability
certainly offers room for improvement. The dynamics of the augmented Lagrangian scheme has great impact as
well. Further investigations also include varying the initial configuration, refining the mesh and analysing other
benchmark problems, such as the half-wheel and the MBB beam.
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