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Abstract. Most existing studies in multi-material continuum topology optimization consider linear elastic material 
models. Since actual materials, in general, display a nonlinear constitutive relation, this paper presents an initial 
study to evaluate the influence of the material nonlinearity in the solutions obtained using a multi-material topology 
optimization approach with multiple volume constraints. Material nonlinearity is considered by means of an 
Ogden-based model or a bilinear model. To achieve this, a Matlab implementation using the educational code for 
multi-material topology optimization, PolyMat, was made. We took advantage of the modular structure of the 
educational code to make changes mainly in the structural analysis routine and adapt the optimization formulation 
for the maximization of the stationarity total potential energy. Numerical examples are presented to demonstrate 
the influence of material nonlinearity in the optimized topological solutions. 
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1  Introduction 

The study of multi-material topology optimization is a field that has been getting a lot of interest in the recent 
years. An interesting aspect of formulations involving multiple materials is the fact that the solution to the 
optimization problem gives also the optimal material distribution in the optimized structure. 

In this paper, we discuss and investigate the distribution of candidate materials with nonlinear elastic behavior 
in a multi-material topology optimization approach. There is still a limited number of papers that study this specific 
topic, among which we highlight the works from Zhang, Chi and Paulino [1] and Zhang and Chi [2]. Both works 
use the virtual element method for the discretization and solution of the variational problem. In this paper, instead, 
we adopt the finite element method (FEM) for the solution and discretization of the variational problem. 

2  Material models 

This section presents the material models adopted in this work. Two nonlinear elastic materials were 
considered: a bilinear material model and a compressible Ogden-based material model. 

In this work we assume the hypothesis of small displacements and deformations. The linearized strain tensor 
( is given by the symmetric part of the gradient of the displacement field. 

The response of a material with elastic behavior can be characterized by its strain energy density function 
(), since the stress tensor () and the tangent constitutive tensor () are determined as indicated by eq. (1) . 
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2.1 Compressible Ogden-based material model 

The strain energy density function () that defines this material model is given by: 
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where j, j, j and M are material parameters, 1i i    , i = 1, 2, 3 are the principal stretches under small 
deformations, i  is the principal strain and J is the jacobian of the deformation process, defined as J = 1 2 3. 

Since the material model is given in terms of the principal strains, it is interesting to write the strain tensor 
using the spectral decomposition: 
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where n is the principal direction associated with the principal strain (  ), and ⨂ represents the tensor product 
operator. Given that the compressible Ogden material model is isotropic, the stress tensor is coaxial with respect 
to the strain tensor, so the spectral decomposition of the stress tensor can be defined by: 
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Considering the definition presented in eq. (1) and using the strain energy density function from eq. (2), the 
principal stresses (  ) are calculated by eq. (5). 
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Finally, the tangent constitutive tensor is obtained by the relation between the rate of the stress and the rate 
of the strain tensors. This derivation is shown in classic continuum mechanics books, the authors highlight the 
interested readers to consult Holzapfel [3] and Bonet and Wood [4]. Here, for the sake of brevity, we only present 
the final expression in eq. (6). 
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The derivative in eq. (6) yields: 
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where  is the Kronecker delta. 

2.2 Bilinear material model 

The bilinear material model used in this paper is the one presented by Curnier, He and Zysset [5] as a 
generalization of bimodular material models. The strain energy density function is given by: 
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where () and are Lamé’s first and second parameters, respectively. The first Lamé’s parameter is defined as: 
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Note that, in eq. (9), the trace of the strain tensor is the function that divides the space of the infinitesimal 
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strains. The first Lamé’s parameter can be written in terms of the shear modulus and the Young’s modulus in 
tension and compression, as presented in eq. (10) 
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The stress tensor and the tangent constitutive tensor are obtained by applying eq. (8) in eq. (1): 
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where  is the symmetric fourth order identity tensor, which is given by  = (ik jl + il jk)/2. 

3  Problem formulation 

The topology optimization problem considering multiple materials and subjected to multiple volume 
constraints is presented in eq. (12): 
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where zi is the vector of the design variables associated with material i;  l
iy  is the density of element l associated 

with material i; f is the objective function, which is the stationary total potential energy, min; gj is the jth volume 
constraint; j and j are the sets of material and element indices that belong to the jth volume constraint, 
respectively; j

m a xV is the allowable volume fraction associated with the jth volume constraint; nc is the number of 
volume constraints; Al is the volume of element l and U is the nodal displacement vector which is the solution of 
the nonlinear elasticity problem. 

The element densities are calculated using the density filter proposed by Bourdin [6], with yi = P zi, where P 
is the projection matrix. For further explanations about the density filter operator, the authors suggest the readers 
to check the referred paper. 

3.1 Material mixture penalization 

We adopted the Discrete Material Optimization (DMO)-type material mixture penalization proposed by 
Zhang, Chi and Paulino [1]. In this approach, instead of directly interpolating the constitutive tensors, as done in 
the original DMO-approach, we interpolate the materials’ strain energy densities, eq. (13). 
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It is worth emphasizing that the interpolation presented in eq. (13) reduces to the original DMO scheme if all 
candidate materials are linear elastic. 

3.2 Nonlinear state equations 

The nonlinear state equations are derived from the stationary condition of the total potential energy (), 
defined in eq. (14), which gives the system of nonlinear state equations Fint(z1,…,zm,U) – Fext = 0, where Fext is the 
external nodal forces vector and Fint(z1,…,zm,U) is the internal nodal forces vector given by eq. (15). 
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where Be is the strain-displacement matrix from the FEM and  e
kσ is the Cauchy stress vector of element e 

associated to material k. The outer summation indicated in eq.(15) refers to the assemble process related to the 
finite element method. 

To solve the nonlinear system of equilibrium equations, we adopt the Newton-Raphson method with an 
inexact line-search, presented by Ascher and Greif [7]. It is important to highlight the fact that only material 
nonlinearity is considered in this paper. 

3.3 Sensitivity analysis 

The sensitivity of the objective function is given by eq.(16). 
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where    e e
i i ely z P   , and Pel is the component (e, l) of the projection matrix (P). The derivate of the objective 

function with respect to the element density is given by: 
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Since the objective function is the stationary total potential energy, the second term on the right-hand side in 
eq.(17) is zero. So, the sensitivity of the objective function can be calculated with: 
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The sensitivity of the volume constraint j with respect to the design variables is given by: 
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4  ZPR update scheme 

The optimization problem presented in eq. (12) contains multiple volume constraints, which are linear 
functions of the design variables. In order to efficiently solve the problem, in this work we use the ZPR design 
variable update scheme proposed by Zhang, Paulino and Ramos Jr. [8]. Originally proposed in the context of the 
Ground Structure approach, the ZPR design variable update scheme was later adapted by Sanders, Aguiló e 
Paulino [9] to be used in the density method, with an additional inclusion of the consideration of the Density Filter 
during the update. This version, “ZPR + Density Filter”, is the one provided in the default version of the 
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educational Matlab code, PolyMat, presented by Sanders et al. [10], and was used in this paper. 
In a brief explanation, the ZPR update scheme is derived by linearizing the objective function using an 

exponential intermediate variable and applying the optimality condition on the convex approximated optimization 
problem. By using Lagrangian duality, it can be proven that the Lagrange multipliers are decoupled, allowing the 
design variables associated to each constraint to be updated in an independent way. For a better explanation about 
the derivation of these mathematical features, the authors suggest the readers to check the papers from Zhang, 
Paulino and Ramos Jr. [8], Sanders et al [10] and Zhang, Chi and Paulino [2]. For the sake of brevity, we only 
present the update scheme: 
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where,  e ,*
iz  is the candidate updated design variable, calculated with eq. (22);  e ,k

i ,Uz  and  e ,k
i ,Lz  are the upper and 

lower move limits, respectively, which are defined as presented in eq. (23). It is worth mentioning that in this 
context the index k refers to iteration of the optimization process, e refers to the element and i to the material. 
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In eq. (22), j is the Lagrange multiplier associated with constraint j and  is the damping factor, that usually 
is assumed as 0.5 and M is the ZPR move parameter, which was assumed as 0.2. 
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5  Numerical results 

In this section, a numerical example is presented to illustrate some of the features of this optimization 
problem. For all solutions presented, the tolerance of the residual norm is 10-6, the maximum number of iterations 
of the Newton-Raphson method is set to 30 iterations, the initial value of the radius of the density filter is R0 = 0.2, 
which is decreased after 150 iterations of the optimization process by 3 R0/20 until it reaches a value equal to R0/4. 
The SIMP penalization coefficient is initially equals 1 and it is increased by 0.1 every iteration until it reaches a 
value equal to 3. The optimization process ends when the maximum change of the design variables is smaller than 
0.01 or when the number of iterations is bigger than 300. Plane stress condition is assumed.  

The computational implementation was made using the educational code provided by Sanders et al [10]. The 
domain was discretized by a Centroidal Voronoi Tessellation (CVT) mesh, with 10000 polygonal finite elements, 
generated with the use of PolyMesher, which is an educational Matlab code presented by Talischi et al. [11]. 

Figure 1 presents the stress-strain behavior in uniaxial test of the 5 candidate materials adopted and Tab. 1 
presents the definition of the material models and its associated parameters. 

 

Figure 1. Stress-strain behavior in uniaxial test of the candidate materials 
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Table 1. Definition of the material model and its associated parameters 

Material Model Parameters 
1 Ogden [] = [7.6923, 1000, 0.75] 
2 Ogden [] = [-7.6923, -1000, 0.75] 
3 Bilinear [Et, Ec, G] = [2e4, 125, 7.6923e3] 
4 Bilinear [Et, Ec, G] = [125, 2e4, 7.6923e3] 
5 Bilinear [Et, Ec, G] = [7e3, 7e3, 2.6923e3] 

The selected numerical example is the Michell cantilever, whose geometry and boundary conditions are 
presented in Fig. 2. We also present in Fig. 2 two settings of volume constraints (gj). In the first, Fig. 2(a), one 
volume constraint is associated with the materials with higher stiffness in tension (materials 1 and 3), one is 
associated with the materials with higher stiffness in compression (materials 2 and 4), and one is associated with 
the material with linear behavior (material 5); the second setting, Fig. 2(b), it is defined with one volume constraint 
per material. Is worth mentioning that the summation of the volume constraints (gj) in both cases are 35%. 

 

 

 

 
 (a)  (b) 

Figure 2.  Dimensions, boundary conditions and constraints definitions: (a) Setting 1; (b) Setting 2 

The problem for the Setting 1 was solved considering two load levels: P = 1 kN (small) and P = 10 kN 
(larger). When only materials with linear behavior are considered, the material distribution and the topology 
remain the same with the application of different load levels. But, as can be seen in Fig. 3, the topology and the 
material selection of each member is different. With the small load level, Fig. 3(a), the deformation level is also 
smaller and the bilinear candidate materials 3 and 4 are stiffer than the Ogden-based candidate materials 1 and 2. 
Though, as the load level is increased, Fig. 3(b), the Ogden-based candidate materials become stiffer than the 
bilinear material models. Thus, not only the topology is different, but also the selection of the material in each 
member of the solution. 

 

  

 

 (a) (b)  

Figure 3. Solutions considering Setting 01 of volume constraints: (a) P = 1 kN; (b) P = 10 kN 

In the Setting 2 a numerical problem happened during the optimization process as the continuation scheme 
for the radius of the Density Filter began to be reduced for the solution with larger load level. This problem still 
has to be better investigated, but we tested to solve the problem without the ZPR + Density Filter approach. With 
this attempt, the problem with both load levels could be solved, although there is a clear decrease in the quality of 
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the topology solutions, that has yet to be better investigated. Solutions are presented in Fig. 4. 

 

 

 

 

 

 
 (a)  (b)  (c) 

Figure 4. Solution considering Setting 02 of volume constraints: (a) P = 1 kN (ZPR + Density Filter); 
(b) P = 1 kN (ZPR only); (b) P = 10 kN (ZPR only); 

6  Conclusions 

This paper was an initial study about multi-material topology optimization considering candidate materials 
with nonlinear elastic behavior. The numerical example highlights the fact that the topology and the material 
selection is load level dependent. Further investigations are needed to explain the numerical instability that 
occurred in the volume constraint setting 2 for the higher load level. This initial work leaves room for further 
developments including the extension to other nonlinear elastic models. 
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