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Abstract. This work presents a stress-based application of the bi-directional evolutionary structural optimization 

(BESO) method for topology optimization of structures where the objective is to minimize the stress while 

subjected to a structural volume constraint. The structure is discretized with a finite element mesh and subjected 

to a static external load to evaluate the von Mises stress distribution that will be used to obtain an equivalent 

global stress measure through a modified P-norm approach. The elemental sensitivity numbers are derived from 

the modified P-norm stress and filtered to update the design. The results were compared to cases found in the 

literature for problems based on stress and compliance. It was verified that the applied methodology was able to 

obtain a maximum stress reduction. 
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1  Introduction 

In many industrial applications, it is often desirable to have lightweight components, and one way to 

accomplish this objective is to employ topology optimization methods during the design process. In this context, 

the work of Le et al. [1] pointed out that most advances in this field have been carried out based on the 

compliance problem and summarized the principal challenges of stress-based topology optimization. Bruggi and 

Duysinx [2] showed examples where optimized designs obtained in compliance-based problems can present 

high-stress concentration. 

The BESO method, detailed by Huang and Xie [3], is a topology optimization algorithm based on the 

gradient of an objective function using discrete design variables, where each design variable represents either 

presence or absence of material. The optimization procedure is performed with an iterative method where a 

discretized domain is submitted to a finite element analysis which allows one to identify elements that can be 

removed or included at each iteration through sensitivity analysis. The main advantages of BESO over other 

methods are high-quality topology solutions, excellent computational efficiency, easy to understand, simplicity 

to implement algorithms, and the presence of a well-defined boundary between different materials. 

Recently, Xia et al. [4] have extended the BESO method to stress minimization problems, where they 

employed the P-norm stress as a global stress measure and proposed new filtering and stabilization methods to 

avoid the complications of stress-based topology optimization. Nabaki et al. [5] presented a similar method and 

reported better results than those provided by Xia et al. [4]. However, recent publications have considered the 

stress as a local quantity and, therefore, avoid aggregation techniques. 

This work is concerned with the implementation of the methodology presented by Nabaki et al. [5] to solve 

different 2D cases found in the literature and evaluates the efficiency of the obtained results. All programming of 
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the finite element method (pre-processing, solver, and post-processing) besides the optimization algorithm were 

implemented in the Matlab© software, the results being discussed in some applications. 

2  Problem formulation 

In this work, the stress-based topology optimization is formulated to minimize the modified P-norm stress 

for a given volume. In each iteration, a finite element analysis is performed to determine the von Mises stress 

distribution and the P-norm stress sensitivity of the elements. The topology optimization problem is formulated 

as shown in eq. (1), 
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where 𝜎G
PN is the modified P-norm stress measure. V* and Vi are the specified final structural volume and the 

volume of the i-th element, respectively. In the BESO method, the density of the i-th element is denoted by a 

discrete design variable xi, where xi = 1 represents solid elements and xi = xmin = 0.001 represents void elements. 

The exponent P is the P-norm factor, 𝜎i
vm is the von Mises stress in the centroid of the elements and Ni is the 

number of elements. 

2.1 Finite element analysis 

The structure is discretized in a finite element mesh and submitted to a static load to evaluate the element 

stresses. The equilibrium is described by eq. (2), 

 F KU  (2) 

where F is the vector containing the force components, K is the global stiffness matrix and U is the displacement 

vector of the structure. The global stiffness matrix is assembled according to eq. (3), 
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where 
0
iK  and q are the stiffness matrix of the solid element and the penalty exponent, respectively; in this work  

q = 3. The plane stress tensor of each element is expressed by eq. (4), 

 { , , }i i i i xx yy xy   σ DB u  (4) 

Di is the material constitutive matrix, Bi is the strain-displacement matrix and ui is the displacement vector 

of the i-th element. Employing the solid isotropic material with penalization (SIMP) model to interpolate the 

material and considering the plane-stress state, Di is given as shown in eq. (5), 
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where 
0E  and υ are the elastic modulus and the Poisson’s ratio, respectively. It is adopted q = 1 in this work. 

Finally, the von Mises stress can be determined by eq. (6), as follows, 
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2.2 Sensitivity analysis 

The calculation of the sensitivities begins through application of the chain rule in the modified P-norm 

stress, as shown in eq. (7). 
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The term vm
i

PN
G x   )( is determined by eq. (8). 

      

1
1

1

1

( ) 1 1iPN N PP P
vm vmG

i ivm
ii ii

x
x x

N N


 



 
 

  



 
  

  
  (8) 

The derivatives of the von Mises stress, given in Eq. (6), with respect to its stress components are obtained 

as described by eqs. (9), (10) and (11), 
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Taking the derivative from eq. (4) with regards to xi, eq. (12) follows, 
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Applying the chain rule in the equilibrium equation, given by eq. (2) and considering the term 0 ixF , 

the term ixx  )(u is calculated as shown in eq. (13), 
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Rewriting eq. (7) based on eqs. (13) and (12) results in eq. (14), 
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From eq. (14), an adjoint variable 𝜆, can be defined by eq. (15), 
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which can be solved by eq. (16), as follows: 
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Finally, substituting the adjoint variable into eq. (14), we obtain the element sensitivity number 𝛼i,. Due to 

problem’s minimization characteristic, 𝛼i is determined by the negative gradient of the P-norm stress, as 

expressed in eq. (17). 
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2.3 Bi-directional evolutionary structural optimization 

This work employs the BESO basic procedure detailed in Huang and Xie [3] and can be summarized in the 

following steps: 

Step 1: Prepare the design domain to finite element analysis; 

Step 2: Define the BESO parameters: P-norm factor (P), penalty exponent (q), evolutionary rate (ER), filter 

radius (rmin), and specified final structure volume (V*); 

Step 3: Perform finite element analysis and then determine the sensitivity numbers; 

Step 4: Calculate the target volume for the next iteration (Vk+1) as described in eq. (18), given below: 
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The current iteration number is represented by k. After the specified volume constraint is reached, the 

structural volume will be kept constant in the remaining iterations; 

Step 5: Filter the sensitivity numbers according to eq. (19); 
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where i̂ is the filtered sensitivity number, rij is the distance between the center of the element i and the element 

j and w(rij) is the weight factor defined by eq. (20), as follows: 
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Step 6: Average the sensitivity numbers with their historical information as shown in eq. (21) to improve 

the convergence of the objective function. 
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Step 7: Update the design variables based on the sensitivity numbers, employing the optimality criteria. 

Step 8: Verify convergence according to the criterion in eq. (22) when the volume constraint is satisfied.  
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where 𝜎max is the maximum von Mises stress and N is an integer number, adopted N = 5 in this work. 
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Step 9: Repeat steps 3-8 until the convergence criterion is satisfied. 

2.4 Evolutionary topology optimization of continuum structures with smooth boundary representation 

Unlike the classical zigzag BESO patterns characterized by the removal/addition of elements, the 

evolutionary topology optimization (ETO) method proposed by Da et al. [6] builds a smooth topology based on 

a level set function (LSF) which is determined by nodal sensibility numbers. The projection relationship between 

the domain of interest and the finite element analysis (FEA) model is determined. The analysis of the domain is 

substituted by evaluating the FEA model with different elemental volume fractions. These fractions are 

calculated by an auxiliary LSF, and their sensitivities results in intermediate volume elements at the solid-void 

interface of the FEA model. 

We can thus briefly summarize each iteration of the ETO method, as follows: First, a FE mesh is 

constructed, material properties, boundary and loading conditions are applied, and the variational problem is 

solved. Then, the elemental sensitivity numbers are calculated and converted into nodal sensitivity numbers. This 

is performed by the filter and average with their history information. Then, the target volume for the next 

iteration is determined and the LSF function is constructed. After that, the elemental volume fraction of the FEA 

model is computed, and the topology of the design model is updated by the level-set value S. Finally, this is 

repeated until the volume constraint and convergence criterion are reached. 

3  Numerical examples 

This section describes the application of these methods in two examples, considering 2D structures. In the 

two cases, examples presented by Xia et al. [4] were solved and a comparison between both methods was made. 

All cases are submitted to compliance and stress minimization, subjected to a volume constraint. The domains 

were meshed with quadrilateral bilinear elements (Q4) considering plane stress state. 

3.1 Cantilever beam with distributed load 

The cantilever presented in Figure 1Erro! Fonte de referência não encontrada.(a) was loaded with a 5 N 

distributed force over 10 nodes at the top right-hand and was clamped on the left-hand side. The cantilever 

thickness is 1 mm and the domain was discretized in 20000 elements with 1 mm length. The elastic modulus and 

Poisson ratio are E = 1 MPa and υ = 0.3, respectively. The filter radius, evolutionary rate, specified volume and 

P-norm factor are set to rmin = 5 mm, ER = 0.02, V* = 0.5 and P = 4 (values from 3 to 5 works right). 

 

Figure 1. (a) Cantilever beam with distributed load, (b) Results found by (a) Xia et al. [4] 

Erro! Fonte de referência não encontrada.(b) shows the final stresses obtained with compliance and 
stress minimization objectives, presented by Xia et al. [4] and the results obtained in this work can be observed 

in Figure 2 and Figure 3.  The results reported by Xia et al. [4] reduced the maximum stress through the stress 

minimization, relative to the compliance minimization results, by 16.7%. However, in the current work, a 
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reduction of the maximum stress of around 21.4% is observed using BESO and 7.1% using ETO (both showin 

properly computational performance). 

 

Minimizing compliance                              Minimizing stress        

 

Figure 2. Results of cantilever beam using BESO 

 

Figure 3. Results of cantilever beam using ETO 

3.2 Simply supported pre-cracked beam 

In this case, the simply supported beam presented in Figure 4(a) was loaded with a 10 N distributed force 

over 11 nodes in the middle of the top edge. The structural thickness is 1 mm and the domain was discretized in 

10800 elements with 1 mm length. The elastic modulus and Poisson ratio are E = 1 MPa and υ = 0.3, 

respectively. The filter radius, evolutionary rate, specified volume and P-norm factor are set to rmin = 4 mm, ER 

= 0.02, V* = 0.5 and P=4. The eight elements around the supports are suppressed in the optimization problem to 

avoid stress concentration. 

 

Figure 4. a) Simply supported pre-cracked beam, b) Results found by (a) Xia et al. [4] 

Figure 4(b) shows the results presented by Xia et al. [4] where the maximum stress was reduced by 18.5%, 

after comparing the maximum von Mises stress of the stress minimization relative to the compliance 

minimization; while in the current work a reduction of around 17.9% was obtained both using BESO and ETO 

(Figure 5 and Figure 6). 
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Figure 5. Results of pre-cracked beam using BESO 

 

Figure 6. Results of pre-cracked beam using ETO 

4  Conclusions 

Both BESO and ETO produce comparable results for structural topology optimization. In the first problem, 

the cantilever beam with distributed load, the reduction of the maximum stress was around 21.4% using BESO 

and 7.1% using ETO, compared with the compliance results, showing similarity with the final optimized 

topology and results from Xia et al. [4]. In the second problem, the simply supported pre-cracked beam, the 

reduction of the maximum stress was around 17.9% both using BESO and ETO, again compared with the 

compliance results, and showing also certain similarities in the final topologies and stresses with Xia et al. [4].  
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