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Abstract. Accurate determination of fuel properties of complex mixtures over a wide range of pressure and tem-
perature conditions is essential to utilizing alternative fuels. Obtaining thermophysical properties of complex fuels
is important for design and analysis but difficult to measure/predict, especially in the range of extreme conditions
operations. Molecular dynamics (MD) simulations have been widely used to characterize physicochemical proper-
ties of fuels, including transport properties at supercritical conditions. Although MD simulations provide molecular
details that can be potentially be used to predict fuel properties accurately, they are generally too expensive in terms
of computational costs. In addition, MD predictions also need to be validated against experimental measurements,
which can be even more costly, especially in extreme conditions. Accordingly, it is not feasible to establish com-
plete and detailed fuel property databases consisting of a wide range of pressure and temperature conditions using
MD simulations or experimental measurements. Machine learning (ML) has great potentials to discover from data
the relation between inputs and outputs of complex systems. ML can be a powerful tool to predict fuel properties
from chemical compositions of the fuel mixture and/or chemical structures of the fuel molecules. Those models
can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity
approach. The present work aims to construct cheap-to-compute ML models to act as closure equations for pre-
dicting the physical properties of diesel/biodiesel surrogate fuels. Here, Gaussian Process (GP) and probabilistic
generative models are adopted. GP is a popular non-parametric Bayesian approach to build surrogate models
mainly due to its capacity to handle the aleatory and epistemic uncertainties. Generative models have shown the
ability of deep neural networks employed with the same intent. In this work, machine learning analysis is focused
on a particular property, the fuel density, but it can also be extended to other physicochemical properties.

Keywords: Molecular Dynamics, Data-fusion-fidelity machine learning models, Material properties

1 Introduction

Future environment legislation will require both drastically reduce pollutant emissions and more sustainable
energy utilization. Following these concerns, alternative fuels will be increasingly more important in the transport
industry, and especially for sectors where fossil fuels are the major energy supply. A significant challenge for the
utilization of alternative fuels in combustion engines falls in an accurate determination of their physicochemical
properties. That is the case of synthetic diesel and biodiesel, which are promise substitutes to petroleum diesel.
Another challenge is due to the fact that such alternative fuels are often complex chemical compositions, and
simplified surrogate fuels are often used to describe the chemical compositions of these fuels [1–3]. Also, modern
combustion devices operating in supercritical conditions have been improving energy conservation efficiency and
diminish pollutant emissions [4]. Thus, fuel properties at extreme conditions such as high pressure and temperature
are very important to accurately describe the combustion characteristics. However, the physicochemical properties
of the fuels at those conditions are extremely difficult to measure, falling to another major challenge.

Also, the design of combustion systems in supercritical conditions becomes more challenging due to the
limitations of replicating flow and combustion in controlled laboratory environments. In this regard, computational
simulations can provide tools for leveraging the use of modern combustion engines in extreme conditions. From
a computational fluid dynamics (CFD) perspective, combustion models must combine the capability to predict the
relevant flow features with the ability to solve physical phenomena involved in the combustion process, typically
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describing govern quantities of interest such as physicochemical properties of the fuels and the mixing, which
are obtained through approaches that can often lead uncertainties. That is for instance the case found within the
Engine Combustion like the Spray-A injector [30], where the simulations encompass a variety of quite different
conditions. More specifically, the operating conditions can range from 2,000 bar to even 0 bar, and similarly
spread is also found with temperatures. Furthermore, such simulations can be more challenging for complex fuels
mixtures that fall in the use of synthetic diesel and biodiesel, and simplified surrogate fuels are employed to predict
the physicochemical properties [3, 5]. This allows the design of experiments, and also Molecular Dynamics (MD)
simulations [6, 7].

Molecular Dynamics has been successfully used to measure the physicochemical properties of diesel surro-
gate fuels [5]. Despite MD simulations provide essential molecular details that enable to accurately predict the fuel
properties, such simulations require a high computational burden. Also, the predictions need to be validated against
experimental measurements, which entails a more challenge, especially at supercritical conditions. Consequently,
build physicochemical properties databases of fuels for a wide range of temperatures and pressures through MD
simulations or experiment measurements becomes unavailable. In this work, we aim to leverage the MD simu-
lations for predicting fuel physicochemical properties using Machine Learning (ML) models. Physicochemical
properties are generally expressed as functions of local pressure and temperature, which motivates to refer to the
closure models as Equations of State (EoS), that have to be embedded in complex CDF codes, which in turn makes
not convenient the use of traditional schemes based on tabular and interpolation schemes. Thus, we aim to build
models able to characterize the physicochemical properties of combustion devices over a wide range of operating
conditions.

In the present work, we build two different machine learning models. First, we build a Gaussian Process (GP)
model, a popular approach due to its success in being a proxy for high-fidelity models in different applications
[8–13]. Also, we build a probabilistic conditional generative approach that explores existing low-dimensional
structures capable of explaining high-dimensional data introducing probabilistic latent variables [14, 15]. Here,
we train both in a data-driven learning approach where expensive MD simulations are used to produce the training
dataset. Therefore, we rely on their ability to learn from small data regime and their capacity for extrapolation.
Furthermore, we also want to take into consideration the unavoidable uncertainties arising from limited information
(epistemic) and from noisy data (aleatoric).

The rest of this paper is organized as follows. Section 2 presents the machine learning models. Section 3
describes the ML results for typical fuel surrogates of diesel and biodiesel. Finally, section 4 concludes the study
with recommendation for further investigations.

2 Machine Learning Models to Describe Physicochemical Properties

Here, we present a generic property as a function of pressure and temperature described by the ML models.
In the training process, we assume the availability of, potentially expensive, dataset comprising input/output pairs
{(p, T )i, γi i = 1, ..., n} generated by an implicit mapping g characterizing the macroscopic thermodynamic
relation between the property and the state variables:

γ = g(p, T ; ξ). (1)

Here, the role of g is played by upscaling MD simulations or, to a less extent, by experimental available data. The
vector ξ represents potential noisy and is often considered a random. In order to keep a compact notation, we refer
to the above dataset as D = (x,y), with x ∈ R2n and y ∈ Rn vectors containing inputs and outputs.

2.1 Gaussian Process regression

A GP represents an infinite collection of random variables, in which any finite number of such variables depict
a joint Gaussian distribution [8]. Following the Bayesian perspective, to approximate g we assign a GP zero mean
prior f(x) , i.e., f ∼ GP (f |0, k(x,x′

; θ)), where k is a kernel parametrized by a vector of hyper-parameters θ to
be learned from D and engenders a symmetric positive-definite n×n covariance matrix Kij = k(xi, xj ; θ). Also,
instead of choosing the squared exponential form of the kernel as usual [8], here, we use the Matern3/2 covariance
matrix belonging to the Matern family

k(r, θ) = σ2

(
1 +
√
6
|r|
l

)
exp

(
−
√
6
|r|
l

)
(2)

, where r = x − x
′

denoting the distance between different inputs, and the hyper-parameters are the standard
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deviation σ, and the correlation lengths l = {l1, l2, . . . , lnr}, and nr denotes the dimension of input r. Hence, the
hyper-parameters vector reduces to θ = {l, σ}.

Also, we do not follow a fully Bayesian approach, and obtain the vector of hyper-parameters θ by maximizing
the marginal log-likelihood of the model, i.e.

log p(y|x, θ) = −1

2
log|K| − 1

2
yTK−1y − n

2
log2π. (3)

using a conjugate gradient descend method. The final aim of the GP regression is to return a predictive model for
γ, which means to compute its value for untested state variables x∗ [9]

µ∗(x∗) = k∗nK
−1y (4)

and
σ2
∗(x∗) = k∗∗ − k∗nK−1kT∗n (5)

where k∗n = [k(x∗,x1), . . . , k(x∗,xn)] and k∗∗ = k(x∗,x∗). The predictions are computed using the posterior
mean µ∗, and the uncertainty associated with that predictions is quantified through the posterior variance σ2

∗. It is
worth to mention that in absence of noisy in the training data, the later represents epistemic uncertainty due to lack
of data.

2.2 Probabilistic Conditional Generative model

Here, a probabilistic conditional generative approach proposed by [14, 15] is explored to describe physic-
ochemical properties. That model integrates variational auto-encoders (VAE) [16], and generative adversarial
networks (GANs) [17] and employ, from the beginning, a probabilistic perspective that enables to take into con-
sideration noisy and limited data. The final goal is to build a data-driven probabilistic neural network that follow
a conditional probability density function p(γ|(p, T ),D). Thus, it can provide accurate values for the property γ
by estimating the expectation values Ep(γ|(p, T ),D), and, also, to quantify the uncertainty associated with the
predictions.

More specifically, a vector of latent random variables is introduced aiming at seeking a hidden low dimen-
sional structure for explaining the data structure. Such latent variables allow us to express the conditional proba-
bility associate to the data D, p(y|x), as an infinite mixture model through

p(y|x) =
∫
p(y, z|x)dz =

∫
p(y|x, z)p(z|x)dz (6)

, where p(z|x) is a prior distribution on the latent variables. Therefore, the first step is to learn the latent variables.
A detailed description of the training approach can be seen in [14, 15].

The statistics of the outputs y can be characterized by sampling the latent variables from the prior p(z) and
passing them through the generator to yield conditional samples y = fθ(x, z) that are distributed according to
the predictive model distribution pθ(y|x). So, the expected value and variance of the predictive distribution at an
untested point x∗ are computed as.

µy(x∗) = Epθ [y|x∗, z] ≈
1

Ns

Ns∑
i=1

[fθ(x∗, zi)] (7)

σ2
y(x∗) = V arpθ [y|x∗, z] ≈

1

Ns

Ns∑
i=1

[fθ(x∗, zi)− µy(x∗)]
2
, (8)

where zi ∼ p(z), i = 1, . . . , Ns, and Ns corresponds to the total number of Monte Carlo samples.

3 Results

Now, we present a demonstration to showcase the applicability of the proposed machine learning models.
More specifically, we construct machine learning models to characterize the diesel/biodiesel surrogate fuels den-
sities dependent on the chemical compositions, temperature, and pressure. Moreover, it is worth mention here that
we consider as the input that characterizes the chemical compositions the number of atoms of carbon in the fuel
molecule and it is considered a continuous variable.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Template file for CILAMCE-PANACM-2021 full-length paper (enter here with the short title of your paper)

Table 1. Accuracy metrics of machine learning models to predict the diesel densities.

(a) Gaussian Process training accuracy.

Train data L2−MRE R2-score

10 % 6.2805× 10−2 0.8538

50 % 4.7438× 10−2 0.9976

80 % 2.7272× 10−2 0.9991

(b) Generative model training accuracy.

Train data L2−MRE R2-score

10 % 4.9316× 10−2 0.9359

50 % 2.8989× 10−3 0.9983

80 % 2.1409× 10−3 0.9990

We consider as diesel and biodiesel surrogate fuels single-component alkanes CnH2n+2 and fatty acid methyl
esters (FAME - CnH2nO2), respectively. These compounds have been widely used as surrogate models because of
the availability of validated chemical mechanisms and experimental measurements. More specifically, the diesel
surrogates fuels considered are n-octane,n-nonane, n-decane, n-dodecane, and n-hexadecane, and the biodiesel
surrogate fuels are n-hexanoate, n-decanoate, n-myristate, n-palmitate and n-stearate. Also, the densities for the
training dataset is computed using All-atom Optimised Potentials for Liquid Simulations (OPLS-AA) force field in
equilibrium molecular dynamics (EMD) simulation with conditions ranging from high-pressure nozzle condition
to supercritical chamber environment. Moreover, 80% of the dataset is selected randomly to training the ML
models, and the remaining 20% is used to test. Moreover, the training data set is shared in three subsets with
10%, 50%, and 80% of data available to train the models. The aim here is to evaluate the impacts of construct the
machine learning models in a small data regime.

Here, accuracy is measured using the distance between the expected values predicted with the ML models
and the predictions computed with the MD simulations. To evaluate the surrogate model, we check the accuracy
computing the L2 mean relative error (L2−MRE) [18]. Also, we compute the coefficient of determination (R2-
scire) metric [19]. Also, we train the GP regression model of Eq. 1 via maximizing the marginal log-likelihood
of Eq. 3 using the Mattern3/2 kernel function. The algorithm was implemented in GPy: Gaussian Process (GP)
framework written in python [20]. Furthermore, the conditional generative model is constructed using fully con-
nected feed-forward architectures for the encoder and generator networks with 4 hidden layers and 100 neurons per
layer, while the discriminator architecture has 2 hidden layers with 100 neurons per layer. All activation uses a hy-
perbolic tangent non-linearity. The models are trained for 50,000 stochastic gradient descent steps using the Adam
optimizer [21] with a learning rate of 10−4, while fixing a two-to-one ratio for the discriminator versus generator
updates. The proposed model was implemented in TensorFlow v2.1.0 [22], and computations were performed in
single precision arithmetic on a single NVIDIA GeForce RTX 2060 GPU card.

3.1 ML results for a diesel surrogate fuel

Tables 1a and 1b show the coefficient of determination (R2-score) and L2 mean relative error for GP and
probabilistic conditional generative models, respectively. Here, the accuracy metrics are computed with the test
samples. We observe that the accuracies of the machine learning models are not satisfactory in the small training
data scenario with 10% of training data. For a more optimistic condition, with 50% of training data, we observe
that the surrogate models return good predictions with R2-score higher than 0.99. Finally, with 100% of the
training data, we can see that the surrogate models return excellent predictions with R2-score very near 1.0 and
mean relative errors lower than 0.03%.

As a further illustration of the performance of such approaches to predict the physicochemical properties, we
plot the octane density along with temperature for the ML models trained with 50% of the dataset randomly chosen,
since this training scenario returns the best relation cost-accuracy. Figure 1 shows the octane density predictions
along with the temperature at the pressures equal to 3, 10, and 100 MPa. We can observe that at 3MPa the GP
model predicts well the density but near the critical points (transcritical conditions) return bad predictions. Also,
we note that the probabilistic conditional generative model returns robust predictions with uncertainties bounds that
capture the density even at transcritical conditions. Here, the predictive uncertainty of the proposed approaches
reflects the uncertainty due to the inherent epistemic uncertainty in the GP and neural network approximations.
We can also note that at 10 and 100 MPa the ML models return robust predictions with uncertainties bounds able
to capture with accuracy the fuel density.

Also, we test the ability of the ML models to perform in an extrapolation scenario. Here, we compare the
machine learning predictions for heptane (untested composition) density against them provide by the National
Institute of Standards and Technology (NIST) database. Figure 2 shows that at 3 MPa and liquid conditions the
ML model returns robust predictions of the heptane density with small uncertainties. However, at supercritical
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(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 1. Octane predictions with the GP (top) and probabilistic conditional generative models (bottom) at the
pressures 3, 10, and 100 MPa.

(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 2. Heptane predictions with the GP machine learning model (top) and conditional generative machine
learning model (bottom) at the pressures 3, 10, and 100 MPa.

conditions, the GP model returns density predictions far from satisfactory. Also, we note that the generative model
has uncertainty bounds able to capture the thermophysical property. The L2 mean relative error between the NIST
dataset and the expected values predicted by the GP and conditional generative models are 7.1697 × 10−2 and
2.0838×10−2, respectively. We can also note that at higher pressure the learning models present better predictions
with the GP model showing larger uncertainties bounds.

3.2 ML results for a biodiesel surrogate fuel

Now, we depict the performance of ML models to leverage the predictions of biodiesel surrogate fuels densi-
ties. We observe that the accuracies of the machine learning models are satisfactory even in the small training data
scenario with 10% of the dataset, as shown in Tables 2a and 2b. The models return good predictions with R2-score
higher than 0.98 and mean relative errors lower than 0.8%. Moreover, with 80% of dataset for training, we can see
that the GP model return excellent predictions with R2-score very near 1.0 and 4.9196× 10−9 mean relative error.

Similarly to section 3.1, we plot the decanoate densities along with temperature for the ML models trained
with 50% of the dataset randomly chosen. Figure 3 shows the decanoate density predictions along with the tem-
perature at the pressures equal to 4, 10, and 100 MPa. We can observe that the GP model returns robust predictions
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Table 2. Accuracy metrics of machine learning models to predict the biodiesel densities.

(a) Gaussian Process training accuracy

Train data L2−MRE R2-score

10 % 1.9056× 10−2 0.9888

50 % 7.3092× 10−1 0.9994

80 % 4.9196× 10−9 0.9999

(b) Generative model training accuracy

Train data L2−MRE R2-score

10 % 1.5836× 10−2 0.9884

50 % 7.1665× 10−3 0.9917

80 % 1.2659× 10−2 0.9877

of the density even at transcritical conditions. Also, we note that the probabilistic conditional generative model
predicts well with uncertainties bounds that capture the density except for a few points under transcritical condi-
tions. Here, the predictive uncertainty of the models are associated to the inherent epistemic uncertainty in the GP
and neural network approximations.

(a) 4 MPa (b) 10 MPa (c) 100 MPa

Figure 3. Decanoate predictions with the GP machine learning model (top) and conditional generative machine
learning model (bottom) at the pressures 4, 10, and 100 MPa.

4 Conclusions

We propose machine learning models to leverage Molecular Dynamics simulations for obtaining physico-
chemical properties, like density or heat diffusion coefficient. The ML models have been revealed powerful tools
to predict the fuel properties from the chemical compositions of the fuel mixture and/or chemical structures of the
fuel molecules, as demonstrated by our numerical examples. Also, such ML models can be employed efficiently
in the context of UQ many-query tasks.

We place our contribution in the emerging area of physics-aware machine learning, where the final model,
in many different ways, blends two main components: availability of experimental data and/or often expensive
computational models relying on first principles and phenomenological closure equations, and machine learning
data-driven models. Such combination allows describing physicochemical properties over a wide range of flow
conditions at relatively low cost, and also offers a broad spectrum of opportunities to enhance CFD codes.
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