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Abstract. In the context of frame structures, kinematically exact rod models are pivotal to correctly describe 
critical loads and post-critical behaviour. For thin-walled open-section members, such formulations need to take 
cross-sectional warping into account, since it becomes a relevant load-carrying mechanism due to the very small 
torsion stiffness of such members. Most thin-walled rod models available in the literature consider only the so-
called primary warping, which is the warping in the direction of the cross-section´s walls lengths. The walls´ 
thickness warping, or secondary warping, is typically neglected. Although primary warping generally suffices to 
properly capture the rod´s deformation, there are particular cases wherein secondary warping becomes relevant, 
and to which existing models often fail to perform. This work develops a kinematically exact rod model for thin-
walled open section members taking into account both primary and secondary cross-sectional warpings. Advanced 
elastic constitutive equations are then incorporated in order to enable full bending, compression and torsional strain 
couplings in the finite strain regime. The model is implemented in an in-house finite element program and its 
outcomes are validated against reference solutions obtained using hierarchically higher order formulations, having 
as reference large deformation ANSYS’s shell 181 elements.  
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1  Introduction 

One-dimensional linear rod models were the first attempt in science and engineering to mathematically 
represent real life structures. Ranging from Bernoulli-Euler´s to Timoshenko´s and Vlasov´s theories, and although 
very convenient, they are unsuited if one is interested in evaluating flexible structures and post-critical behaviour. 
These models can be found in many textbooks (see [1] and [2], for example). 

The first (three-dimensional) kinematically exact rod model was presented by Simo [3] and Simo and Vu-
Quoc[4], where a Timoshenko-like assumption for the cross-sectional shearing w.r.t. the rod axis was followed. 
The rotational degrees-of-freedom (DOFs) were exactly treated through the Euler-Rodrigues formula, and this was 
a major breakthrough at the time. Simo and Vu-Quoc [5] also advanced towards considering a warping function, 
especially useful for torsion-dominated problems. A wide array of nonlinear rod models has been developed in the 
literature since then, many of which directly derived from Simo’s works. In order to mention a few interesting 
formulations, particularly related to the purpose of this paper, the reader might consult the works of [6]–[13].  

Still, when it comes to thin-walled open-section members, existing formulations often struggle to 
simultaneously predict critical loads and post critical behaviour, to which torsion and warping become relevant to 
the buckling mode. Most of these models typically consider only the so-called primary warping, which is the 
warping in the direction of the cross-section´s walls lengths, and ignore the warping in the thickness direction, or 
secondary warping. The lack of secondary warping, combined with the use of unsuited material laws for large 
deformations, may explain the difficulties of these models in the pursuit of post-critical solutions. Recently, 
Campello and Lago [11] incorporated a more elaborate assumption for the warping deformation, together with a 
more advanced constitutive law for large strains. However, the proposed warping function was only suitable to 
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certain bi-symmetric cross-sections (although this was not detected at the time), which were the tested cases.  
In this context, this work develops a geometrically-exact rod model that correctly accounts for both primary 

and secondary warpings for arbitrary (symmetric and non-symmetric) thin-walled open sections. We then adopt 
the Saint-Venant’s material law and derive an advanced constitutive equation, whereby all strain terms in the 
stress-strain relation are retained, arriving at a robust 7-DOF model for thin-walled open-section members. The 
model is implemented into PEFSYS, a nonlinear finite element program for static and dynamic analysis under 
development at the Department of Structural and Geotechnical Engineering of the University of São Paulo, and is 
validated against reference solutions obtained from the literature and also with ANSYS’s shell 181 elements. This 
work is an intermediate step of a larger work, which aims to incorporate the truly large-strain, neo-Hookean Simo-
Ciarlet’s material law at the constitutive equation. 

The following notation is adopted here: lowercase italic Latin or Greek letters (𝑎, 𝑏, … , 𝛼, 𝛽, … . ) denote scalar 
quantities, lowercase bold-italic Latin or Greek letters (𝒂, 𝒃, … , 𝜶, 𝜷, … . ) denote vectors, and capital bold-italic 
Latin or Greek letters (𝑨, 𝑩, … ) denote second-order tensors. Implicit summation convention is used throughout 
the text. When indices are Greek letters, they range from 1 to 2; when they are Latin letters, from 1 to 3. Scalar, 
cross and dyadic products are represented by “∙”, “×” and “⊗”, respectively. Symbol 𝛿(∘) denotes a virtual 
quantity (or, equivalently, a variation), whereas (∘)௥ denotes a quantity in the reference configuration. 

2  The Rod Model 

Using a total Lagrangean description, based on the general (multi-parameter) kinematically exact beam 
model of Pimenta and Campello [12], a 7-DOF model can be developed. As basic assumptions, the cross-sections´ 
displacements are a sum of a rigid body displacement (defined by the beam axis´ displacements 𝒖 and Euler 
rotation vector 𝜽, on the global Cartesian system, comprising 6 DOFs) and an out-of-plane warping displacement. 
The latter is given by the product of a warping intensity parameter (𝑝, the 7th DOF) and a shape function (𝜓), 
which depends solely on the cross-section´s geometry. The constitutive equation may be derived from the Saint-
Venant’s material law, retaining some [8] or all [11] of the higher-order strain terms (opposed to the often used 
linear constitutive equation, as e.g. in [3]–[5] and [7]). In [11], this model is particularized to the case of 7-DOF 
models and “exact” constitutive equation (i.e., with all strain terms retained), with numerical cross-section 
integration for computation of the stress-resultants, similarly to the approach adopted in the current work. Here, 
this is achieved by discretizing each of the cross-section´s walls on rectangular cells, and then integrating the 
desired function with the standard composed Simpson’s method. In this section, a brief description is shown. For 
more details, it is suggested that the reader consults the above-mentioned references, especially [11]. The model’s 
solution can be achieved through a standard (Lagrangean, isoparametric) beam finite element, numerically 
integrated along the element’s axis with reduced integration to avoid shear locking. Incremental loading is 
implemented for the solution. Each one of the incremental load steps is solved using Newton’s method.  

2.1 Kinematical description 

(a) (b) 

Figure 1. (a) Rod kinematics and (b) representation of a thin-walled cross-section  

Assuming a straight rod initial configuration, with a local orthonormal system {𝒆ଵ
௥ , 𝒆ଶ

௥ , 𝒆ଷ
௥}, with 𝒆ଷ

௥  coinciding 
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with the reference rod´s axis (see Fig. 1a), the position of every material point in the reference configuration can 
be described by 

 𝝃 = 𝜁𝒆𝟑
𝒓 + 𝒂𝒓,   𝜁 ∈ 𝛺 = [0, 𝐿]. (1) 

In the current configuration, the position of every point is represented by 

 𝒙 = 𝒛 + 𝒂 + 𝒘 , (2) 

where 𝒖 = 𝒛 − 𝜻 represents the axis displacement, 𝒂 = 𝑸𝒂𝒓 the cross-section’s displacements due to rotation and 
𝒘 = 𝑝𝜓𝒆𝟑 the warping displacement, for a given rotation tensor (𝑸), warping function (𝜓) and warping intensity 
(𝑝). For each cross-sectional wall 𝑛, an orthonormal local system (𝑥̅௡ , 𝑦ത௡) is assigned (see Fig. 1b), as this will be 
useful for the definition of the warping function later on. The rotation field is parametrized using Euler-Rodrigues 
equation, exactly as done in [3], [7], [10], for example. It is useful to group the model´s DOFs 𝒖, 𝜽 and 𝑝 into a 
generalized displacement vector, = [𝒖, 𝜽, 𝑝]் .The deformation gradient 𝑭 is obtained from eq. (2), and reads 

 𝑭 =
డ𝒙

డ𝝃
= 𝑸൫𝑰 + 𝜓,ఈ𝑝𝒆𝟑

𝒓 ⊗ 𝒆𝜶
𝒓 + 𝜸𝟑

𝒓 ⊗ 𝒆𝟑
𝒓൯ = 𝑸𝑭𝒓, with (3) 

 𝜸𝟑
𝒓 = 𝜼𝒓 + 𝜿𝒓 × (𝒂𝒓 + 𝜓𝑝𝒆𝟑

𝒓) + 𝜓𝑝ᇱ𝒆𝟑
𝒓    and   𝜼𝒓 = 𝑸𝑻𝒛ᇱ − 𝒆𝟑

𝒓  and 𝜿𝒓 = 𝜞𝑻𝜽′. (4) 

Tensor 𝜞, required in eq. (4), is a sub-product of the derivative of the rotation tensor, and its definition can 
be found in [3], with a different notation, or in [7]. The above strain quantities can be assigned to a generalized 
strain vector, 𝜺௥ = [𝜼௥ , 𝜿௥ , 𝑝, 𝑝ᇱ]். 

2.2 Equilibrium: weak form 

The virtual work theorem is invoked, imposing the rod´s equilibrium: 

 𝛿𝑊 = 𝛿𝑊௜௡௧ − 𝛿𝑊௘௫௧ = 0 in 𝛺, ∀ 𝛿𝒅|𝛿𝒅(0) = 𝜹𝒅(𝐿) = 𝒐. (5) 

The Fréchet derivative of eq. (5) with respect to 𝒅 results in the tangent operator of the equilibrium, and will 
be directly used on the finite element method’s formulation, as already reported in [3], [7], [8] and other references 
that use a similar description for their models. The internal virtual work can be calculated, using the first Piola-
Kirchoff stress tensor and the deformation gradient conjugate pair {𝑷, 𝑭}, as 

 𝛿𝑊௜௡௧ = ∫ ∫ (𝑷: 𝛿𝑭)𝑑𝐴
஺

𝑑𝜁
ఆ

= ∫ (𝝈௥ ∙ 𝛿𝜺௥)𝑑𝜁
ఆ

, (6) 

wherein 𝝈௥ = [𝒏௥ , 𝒎௥ , 𝑄, 𝐵]் is the generalized stress resultants vector and 𝛿𝜺௥ has an analogous definition as 𝜺௥. 
The interpretation of those quantities is the usual: vector 𝒏 contains the shear (𝑉஑) and axial (𝑁) forces, whereas 
𝒎 contains the bending (𝑀஑) and torsional (𝑇) moments. The warping-related quantities are the bi-shear (𝑄) and 
bi-moment (𝐵). These resultants are obtained through cross-sectional integration of the column-vectors of the 
back-rotated stresses 𝑷௥ = 𝑸்𝑷 (see [11]). It is necessary to obtain the variation of eq. (3) with respect to 𝒅. This 
step can be seen in [7], [8] and will not be reproduced here. As demonstrated in [3], 𝛿𝜺௥ can be written in the form 
𝛿𝜺௥ = 𝜳𝜟𝛿𝒅, where 𝜳 and 𝜟 are auxiliary operators that contain derivatives of rotation and strain tensors and 
derivation operators, and can be seen in this latter reference. 

Analogously, the external virtual work can be calculated, and it depends on the applied external forces (𝒏ഥ), 
moments (𝒎ഥ ) and bi-moment (𝐵ത) (see [7], [8]). An important result, already reported in previous papers ([3], [4], 
[7], among others) is that the virtual rotations are not directly conjugated with the moments, but, instead, with the 
so-called pseudo-moments 𝝁ഥ = 𝜞்𝒎ഥ . The external load can be grouped on the vector 𝒒 = [𝒏ഥ, 𝝁ഥ, 𝐵ത]். 

2.3 Constitutive equation 

In this work, the model was implemented with the exact (i.e., all strain terms retained) expression for the 
Saint-Venant’s material law. This law is a direct extension of the linear elastic case for the finite deformation case 
– instead of using the infinitesimal strain tensor, derived for the linear theory, the Green-Lagrange strain tensor 𝑬 
is used to compute the second Piola-Kirshoff tensor 𝑺. However, for the internal virtual work, the back-rotated 
first Piola-Kirchoff tensor 𝑷௥ is used. Performing the needed conversions, after some algebra the column-vectors 
of 𝑷௥ may be written as follows (see [11]) 
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𝝉ఈ

௥ = 𝜆(𝑰: 𝑬)𝒆ఈ
௥ + 𝜇𝒄ఈ + 𝜇(𝒄ఈ ∙ 𝒆ଷ

௥)𝜸ଷ
௥ + 𝜆(𝑰: 𝑬)𝑝𝜓,ఈ𝒆ଷ

௥ + 𝜇𝑝𝜓,ఉ൫𝒄ఈ ∙ 𝒆ఉ
௥ ൯𝒆ଷ

௥ ,

𝝉ଷ
௥ = 𝜆(𝑰: 𝑬)𝒆ଷ

௥ + 𝜇𝒄ଷ + 𝜆(𝑰: 𝑬)𝜸ଷ
௥ + 𝜇(𝒄ଷ ∙ 𝒆ଷ

௥)𝜸ଷ
௥ + 𝜇𝑝𝜓,ఈ(𝒄ଷ ∙ 𝒆ఈ

௥ )𝒆ଷ
௥ ,

 (7) 

where 𝑰: 𝑬 = 𝑡𝑟(𝑬), 𝒄௜ represent the column-vectors of the right Cauchy-Green tensor 𝑪, which contains a wide 
array of products of the elements of 𝜺௥ (see [11] for their analytic expressions) and (𝜆, 𝜇) are the Lamé constants 
for the pair {𝑺, 𝑬}. Due to the kinematical assumptions, Poisson’s effects must be ignored. Therefore, the 
expressions 𝜇 = 𝐺 and 𝜆 + 2𝜇 ≃ 𝐸  are used to derive the Lamé’s constants from the Young’s and shear moduli. 

The matrix of elastic tangent moduli 𝑫 can also be obtained for this elastic constitutive equation. A detailed 
description of its components can be found in [11]. It is also important to mention that both and 𝝉௜

௥  and 𝑫 are 
written in their exact forms, with no simplifications. Strain coupling involving higher-order strain terms can be 
seen when the exact forms are used (some authors refer to some of those terms as “Wagner terms”). In the context 
of thin-walled open section members, it is especially important to highlight the coupling between torsional and 
warping strains (𝜅ଷ

௥, 𝑝 and 𝑝ᇱ) with axial and bending strains (𝜂ଷ
௥ and 𝜅ఈ

௥ ). 

2.4 Warping function 

Many rod models employ the Saint-Venant warping function as the shape function. For linear elastic, or 
incomplete (simplified) neo-Hookean constitutive equations, the Saint-Venant´s torsion inertia (𝐼௧) and Vlasov’s 
warping constant (𝐼ఠ) suffice to describe the warping phenomena. However, when the exact expressions of more 
complex material laws are used, such analytical intermediary results are of little help – numerical integration 
throughout the cross-section is more practical. Therefore, it is necessary to explicitly evaluate the warping shape 
function and its derivatives. Due to this, Lago and Campello [11] proposed a shape function that should incorporate 
both the primary (along the walls’ lengths) and secondary (along the walls’ thicknesses) warping contributions. 
For each wall, the function was 

 𝜓(𝑥ଵ, 𝑥ଶ) = 𝜔(𝑠) + 𝜓ோ(𝑥̅௡ , 𝑦ത௡), (8) 

where 𝜔(𝑠) is the wall´s Vlasov’s sectorial area (wherein 𝑠 is the coordinate along the walls’ lengths) and 𝜓ோ is 
the Saint-Venant’s torsion warping function for thin rectangular sections (see [11], which uses a polynomial 
approximation from [14]), relative to the wall´s local coordinate system (𝑥̅௡, 𝑦ത௡), defined as in Fig. 1b. For 
rectangular, I and cruciform cross-sections, eq. (8) recovers very satisfactorily the Saint-Venant´s warping function 
for such thin-walled open sections. However, for the general (mono-symmetric and non-symmetric) case, this does 
not hold, and the torsional stiffness is greatly overestimated since secondary warping is not correctly addressed. 
This has not been detected by the authors in [11]. To fix this, we propose here a simple alternative expression that 
yields a more suitable function, for any thin-walled open section, composed of thin rectangular walls. Accordingly, 
for each wall 𝑛, the warping function is given by 

 𝜓(𝑥ଵ, 𝑥ଶ) = 𝜓௅(𝑥ଵ, 𝑥ଶ)+𝜓ோ(𝑥̅௡, 𝑦ത௡), (9) 

where 𝜓௅(𝑥ଵ, 𝑥ଶ) is a linear contribution in (𝑥ଵ, 𝑥ଶ), given by 

 𝜓௅(𝑥ଵ, 𝑥ଶ) = −(𝑠ଶ − 𝑂௡
௫మ)൫𝑥ଵ  − 𝑂௡

௫భ൯ + (𝑠ଵ − 𝑂௡
௫భ) (𝑥ଶ − 𝑂௡

௫మ) + 𝑐௡ , (10) 

where (𝑠ଵ, 𝑠ଶ) are the coordinates of the section´s shear centre and ൫𝑂௡
௫భ , O௡

௫మ൯ the coordinates of the wall´s local 
origin. It is important to highlight that the shear centre is defined by imposing the orthogonality conditions, as 
presented in [5], [8]. It follows that the warping function is written w.r.t the shear centre. The independent term 𝑐௡ 
must only be adjusted so that continuity of the warping function is guaranteed on every wall’s intersection. The 
linear function 𝜓௅  can be interpreted as a result of the axis shift from the wall´s local system (where the local 
Saint-Venant’s warping function 𝜓ோ is conceived) to the section´s shear centre, rendering the consistent Saint-
Venant’s warping function for thin-walled open sections. We refer to equations 3.20 and 3.21 from [10] for more 
details on such axis shift. One interesting observation is that eq. (10) embeds Vlasov´s sectorial area, as the value 
of 𝜓௅  calculated along the wall’s midline is precisely that given by 𝜔(𝑠). Therefore, the only difference between 
eqs. (8) and (9) are additional terms in (𝑥ଵ, 𝑥ଶ) in the latter, which represent a linear contribution to the secondary 
warping. Note that the linear variation of the displacements along the thickness is a common assumption for shell 
models, and has even been used in other similar rod models (see Gonçalves [15], where only linear terms are 
present in the warping function). This suggests that 𝜓௅  might be even more important than 𝜓ோ for obtaining the 
correct behaviour. To illustrate the differences between the functions generated by eqs. (8) and (9), an example of 
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a channel section is presented in Fig. 2. At first glance, the functions seem very similar. A careful inspection, 
however, reveals pronounced discrepancies in the secondary warping at the flanges, which greatly affect the Saint-
Venant’s torsional inertia (𝐼௧) – although not the warping inertia (𝐼ఠ). In fact, were eq. (8) to be used for simulations 
of this section, torsion rotations would be underestimated two hundredfold. The constants are calculated using the 
standard definitions 𝐼௧ = ∫ (𝑥ଵ

ଶ + 𝑥ଶ
ଶ + 𝑥ଵ𝜓,ଶ − 𝑥ଶ𝜓,ଵ)𝑑𝐴

஺
 and 𝐼ఠ = ∫ 𝜓ଶ𝑑𝐴

஺
.  

(a)  (b)   (c) 

Figure 2. (a) Channel section definition. Warping function with (b) eq. (8) and (c) eq. (9). 

3  Numerical Examples 

In this section we provide illustrative examples to show the current model’s applicability on simple general 
situations. We consider elastic rods with 𝐸 = 200𝐺𝑃𝐴 and 𝐺 = 80𝐺𝑃𝑎 (except on the C-section of example 3.1, 
where 𝐸 = 210𝐺𝑃𝑎 was used to be consistent with [16]). The results are compared with reference solutions using 
kinematically exact rod models with simplified (Vlasov´s) warping function and linear elastic material, either from 
the literature or implemented in PEFSYS (see [8], [10] for details), and also with Ansys’s shell models for large 
deformations and linear elasticity. For examples with pre-critical loading, Vlasov’s analytical solutions [2] are also 
reported for comparison. In order to transpose bifurcation points in post-critical analyses, a load perturbation of 
1% of the main load was applied. In all cases, the rods were discretized in 10 linear (i.e., 2-node) elements (the 
only exception, again, is the C-section from example 3.1, with 30 elements), and the cross-sectional walls in 10x30 
integration cells. 

3.1 Bending and torsion of beams in small to moderate (pre-critical) loading 

This example deals with an I-section, simply supported (torsion rotation restricted at the edges), transversely 
loaded beam and a channel-section cantilever with a transverse load at the tip (see Fig. 3a). In the first case, the 
beam axis is placed at the web´s mid-height, and in the second case at the intersection of the web and top flange. 
For the I-beam, a distributed torsion load exists, whereas for the channel cantilever the transverse load is applied 
outside the shear centre, such as torsion is also expected to occur.  

 (a)   (b)  (c) 

(a)  (b) (c) 

Figure 3. (a) Problem description – example 3.1, (b) vertical displacements (mid-height) and (c) torsion rotation  



On a kinematically exact rod model for thin-walled open section members 

CILAMCE-PANACM-2021 
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 
III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

As it can be seen in Figs. 3b and 3c, results for the I-beam are almost coincident to Vlasov’s analytical 
solution and to ANSYS´s shell solution. It must be highlighted, though, that this is a bi-symmetric section under 
small strains and displacements. For the cantilever, in turn, since the section is mono-symmetric and the load 
eccentric, with the displacements markedly larger, both geometrical and material nonlinearities turn relevant. Up 
to 𝑃 ≈ 8 kN, 𝑢௬ and 𝜃௭ are almost coincident for nearly all models, including the analytical Vlasov’s solution. 
The exception is [11], which is very stiff for 𝜃௭, as a consequence of the incorrect warping function (there barely 
is torsion rotation, as anticipated at the end of the previous section). After this load level, there is a change in the 
load-carrying mechanism and the deformation is intensified (yet, we remark that this is not a case of buckling). 
Results from [11] do not capture this change. The linear elastic rod model from Campello [10], in turn, proved 
stiffer than that from Gruttmann et al. [16], despite their kinematical formulation being rather equivalent, 
suggesting modelling differences on the cross-sectional geometric characterization. This was unexpected and 
needs to be further investigated. The present model, in turn, with the corrected warping function and higher order 
strain terms from the exact Saint Venant´s constitutive equation, allowed better results when compared to both 
[10] and [11], being closer (though not yet similar) to those from shell models. 

3.2 Buckling and post-critical analysis of an I-section column and beam 

This example deals with the buckling of a (i) compression-loaded and (ii) transversely-loaded I-column and 
beam, respectively (see Fig. 4a), both with the same cross-section of the example 3.1. As it can be seen in Figs. 4b 
and 4c, the current model is able to correctly identify the critical load. Comparing with the results from [11], it is 
evident that the herein proposed warping function provides results that virtually coincide with those from [11] for 
bi-symmetric I-sections. For the compression case, all models presented nearly the same displacements on the 
post-critical regime. For the transverse load case, in turn, in the developed large-displacements regime, the 
influence of high-order strain coupling (notably between torsional and bending strains) in the present model is 
identified, making the results differ from those of the linear elastic rod and shell models.  

 

 (a) (b) (c) 

Figure 4. Problem description for example 3.2, lateral displacements for the (a) column and (b) beam 

3.3 Torsional buckling of cruciform and T-section columns 

This example is the torsional buckling of compressed short columns, with cruciform and T-shaped cross-
sections as shown in Fig. 5a. As it can be seen in Figs. 5b and 5c, the rod model with linear elastic material was 
unable to identify the torsion buckling, whereas the present one with consistent warping function and exact Saint-
Venant’s material (with full strain coupling) correctly identified the critical load. It must be said, however, that 
compared to the shell model, the post-critical torsional response herein obtained is significantly different. One 
possible explanation is that the shell model is able to capture in-plane cross-sectional deformations (volumetric 
and distortional changes), which may be relevant in the post-critical regime – especially for such short columns. 
This issue remains to be further investigated. 

(a) (b) (c) 

Figure 5. (a) Problem description for example 3.3. Torsion rotation for (a) cruciform section and (b) T-section. 
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4  Conclusions 

The development of a 7-DOF, kinematically exact rod model with secondary-warping and “exact” Saint-
Venant’s constitutive equation was achieved. The model was validated in pre-critical loading situations and 
buckling load determination, as well as in the post-critical regime – including some cases that were not correctly 
described by simpler rod models. The warping function from [11] was corrected by incorporation of a missing 
(linear through-the-thickness) term. Plus, the coupling effects between torsion strains and other degrees of freedom 
proved crucial at the constitutive equation for proper torsional bucking representation. As a next step in this work, 
besides investigating the small discrepancies observed in example 3.1, an improved constitutive model, with Simo-
Ciarlet´s material law, is under development, which shall be more suited to the fully finite-strain situations such 
as (but not only) more developed post-critical configurations. 
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