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Abstract. A co-rotational model is employed to analyze planar frames considering plasticity effects lumped at 

plastic hinges. The element is locally formulated as the traditional linear element based on the Euler-Bernoulli 

theory. The hinges effects are introduced into the generalized strain fields as Dirac deltas centered at the element 

ends, which naturally results in the formulation of the element with plastic hinges. The plastic constrained 

nonlinear system of equation of the local problems is solved with the Newton-Raphson method running through 

all plastic possibilities, whereas a classical force-control procedure solves the global nonlinear equilibrium 

equations. Two examples are presented to demonstrate the robustness of the formulation to deal with geometrical 

nonlinear elastoplastic analysis of frames. 
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1  Introduction 

The non-linearities that occur in the analysis of frame structures are mainly triggered by two sources: 

geometrical and material. With regard to the nonlinear geometric analysis, it can be efficiently handled by the 

co-rotational formulation [1–5]. The fundamental idea of such a formulation is to decompose the large motion of 

the element into rigid body and pure deformation parts, through the use of a local system which continuously 

rotates and translates with the element. The deformation is captured at the level of the local reference system, 

whereas the geometric non-linearity induced by the large rigid-body motion, is incorporated in the 

transformation matrices relating local and global displacements. The main interest is that the pure deformation 

part can be assumed as small and can be represented by a linear or a low order theory. Avoiding the nonlinear 

relationship between the strain tensor and the displacement gradient makes the co-rotational approach very 

attractive to deal with geometrical nonlinearity. With respect to the nonlinear material analysis of frames, it can 

be distinguishably placed into two branches: the distributed plasticity and the lumped plasticity (plastic hinges) 

[6–8]. Herein, the latter one is adopted due to its efficiency in engineering practices since fewer elements are 

used to model frame members and none integration over the discretized cross-sections is necessary to get the 

internal forces. As a consequence, the element between the plastic hinges is assumed to remain elastic. The 

elastoplastic hinge assumption is the earliest formulation to be dated back among the others. Quite many 

research works have adopted some variations of this method to investigate the inelastic behavior of steel or 

concrete frame structures [9–12].  

In this paper, a co-rotational finite element model is developed to analyze planar frames with elastoplastic 

hinges. The hinges effects are introduced into the generalized strains fields as Dirac deltas centered at the 

element ends, which naturally results in the formulation of the element with elastoplastic hinges. The plastic 

constrained nonlinear system of equation of the local problems at the element level is solved with the Newton-

Raphson method, whereas a classical force-control procedure solves the global nonlinear equilibrium equations. 

Two examples with reference solutions are presented to demonstrate the robustness of the proposed formulation. 
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2  Co-rotational finite element model with plastic hinges 

A co-rotational model is adopted to describe the motion of the element from an initial configuration �� to 

the current configuration ��. The rigid body motion is identified by an intermediate configuration ��� such that 

the motion between the intermediate configuration and the current configuration involves all the deformation of 

the element, under small strains assumption [13]. Thus, the equilibrium equations of the element refereed to ��� 

can be obtained based on the Euler-Bernoulli beam linear theory [14]. The co-rotational model relates the total 

displacements of the element, i.e., from �� to ��, with the displacements involved in the motion from ��� to ��. 

The co-rotational model adopted in the present study allows any planar beam finite element with two nodes and 

three degrees of freedom per node (two displacements and one rotation) to be used to handle non-linear analyses, 

considering small strains, but large displacements and rotations. 

2.1 Equilibrium refereed to ��� 

The co-rotational displacement fields of the Euler-Bernoulli linear element with plastic hinges reads 
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which can be rewritten in matrix notation as 
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where �̅ is the co-rotational axis from node 1 to 2 in the co-rotated frame, #$� is the elastic nodal displacement 

vector, #$� is the plastic nodal displacement vector of the plastic hinges, �
�̅
 is the Heaviside function and �� is 

the initial length of the element. The terms related with #$� appears in the element displacement fields because 

Dirac deltas are introduced into the generalized strain fields 3� = 4�	 4�̅⁄  and 6 = 4��̅ 4�̅�⁄  at the element ends. 

The total co-rotational displacement vector can be written in terms of #$� and #$� in matrix form as 

   #$ = ⎣⎢⎢
⎡�	��̅��	��̅�⎦⎥⎥
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The fields 3�
�̅
 and 6
�̅
 can be represented as 
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Using the Principle of Virtual Displacements, it is possible to establish the equilibrium equations of the 

element referred to ��� 
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where @ = KL3��, A = KM6� are the axial force and bending moment, D̅ is the nodal reactions, EF̅ and EG	  are the 

distributed forces on element. The equivalent nodal forces N$ consistent with the adopted beam theory are derived 

from the work of the distributed forces 
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Replacing (4) into (5), one obtains 
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where 
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with �	� = �	�� + �	��. Note that U ̅ and U�̅ are nodal internal forces that respectively realize work with the elastic 

virtual displacements >#$� and with the plastic virtual displacements >#$�. 

Once, by construction, �	� is null in the co-rotated frame, the displacements #$�, #$�, #$ can be redefined as    #$� ← ⌊�̅�� �	�� �̅��⌋(           #$� ← )�̅�� �	� �̅��*(          #$ ← ⌊�̅� �	� �̅�⌋( = #$� + #$�.                                   
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The same applies to the vectors D̅, N$, U ̅and U�̅:    D̅ ← ⌊AI̅� HF̅� AI̅�⌋(           N$ ← ⌊OR$Q OP$S OR$S⌋( 
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Replacing (9) and (10) into (5) results    >#$�(l−U̅ + D̅ + N$�m + >#$�(l−U�̅ + D̅ + N$�m = 0.                                                                                                       
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Since the virtual displacements δ#$ are arbitrary, it is possible to choose a virtual displacement field completely 

elastic. Supposing that >#$� = � then    −U̅ + D̅ + N$� = �     ⇒      k̅�
#$ − #$�
 = D̅ + N$�                                                                                                          
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which represents the equilibrium of the element refereed to ���. Notice that the system (22) has more unknown 

than equations requiring thus additional equations, like those follow provided. 

2.2 Evolution laws and complementary conditions 

Evolution laws of the plastic relative displacements �	��, �	�� and plastic rotations �̅��, �̅�� of the hinges can be 

written as a function of nodal internal forces @�, A� and @�, A� [15]. Let the respective yield functions for the 

hinges 1 and 2 be represented by    p� = p�
@�, A�
 ≤ 0          p� = p�
@�, A�
 ≤ 0.                                                                                                           
13
 

The evolution laws of the plastic relative displacements �	��, �	�� and plastic rotations �̅��, �̅�� are given by the 
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(discrete form) associative normality rule 
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Recording that �	� = �	�� + �	��, one writes 

   Δ�	� = Δ�	�� + Δ�	�� = Δt� up�u@�  + Δt� up�u@�                                                                                                                     
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where t� and t� are the plastic multipliers of plastic hinges 1 and 2. The evolution laws of t� and t� are    Δt� = 0  if  p�
@�, A�
 < 0          p�
@�, A�
 = 0  if  Δt� > 0 
16
    Δt� = 0  if  p�
@�, A�
 < 0          p�
@�, A�
 = 0  if  Δt� > 0. 
Analytical expressions for the yielding functions p� and p� depends on the cross-section geometry and on 

the constitutive model of the material. Suitable empirical expressions for symmetric cross-sections and elastic 

perfectly plastic materials are given by 

   p�
@�, A�
 = z�@�@G�� + �A�AG�� − 1 ≤ 0          p�
@�, A�
 = z�@�@G�� + �A�AG�� − 1 ≤ 0                               
17
 

where AG is the yield moment of the cross-section without axial forces and @G produces the total plasticization 

of the element when there is no bending moments. 

2.3 Equilibrium refereed to �� 

The equilibrium equations of the element referred to �� can be obtained returning the rigid body motion 

that occurs from of �� to ��� to the element, i.e., identifying the relationship between #$ = ⌊�̅� �	� �̅�⌋( and # = ⌊�� �� �� �� �� ��⌋(. Such relationship can be established in a differential form as [14] 
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Since the work realized by nodal reactions D̅, internal nodal forces U ̅ and equivalent nodal forces N$� are 

invariant with respect to changes in the coordinate system, it is possible to obtain the equilibrium equations of 

the element referred to �� by pre-multiplying (12) by {(  {(l−U̅ + D̅ + N$�m = �     ⇒      }
#
 =  −U + D + N� = �.                                                                                         
19
 

The previous relation forms a system of nonlinear equations, which can be solved by the Newton-Raphson 

procedure. The tangent stiffness matrix k
#
 = u} u#⁄  can be obtained explicitly. To calculate }
#
 and u} u#⁄  it is necessary to obtain U ̅(and #$�) from #. The computation of U ̅from # is denominated local problem. 

2.4 Local problem 

To solve the local problem, the constitutive equations (10) must be combined with the evolution laws (14) – 

(16) in a discrete form as discussed in what follows. Let #$~� be the vector of plastic elongation and plastic 

rotations of the previous known solution #$~, �� the constant related to a particular hinge � (� = 1,2) which 

assumes the values �� = 0 or �� = 1 depending on p�∗ < 0 or p�∗ ≥ 0, where p�∗ is the yield function of the hinge � given by (17) and evaluated for the elastic prediction U∗̅ = k̅�l#$ − #$��m. Assuming that the components of the 

plastic displacement vector #$� are small, one decomposes #$�in the additive form    #$� = #$�� + Δ#$�                                                                                                                                                                     
20
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Figure 1: Clamped beam with a concentrated load 

where, from (14) – (16) 

   Δ#$� = )Δ�̅�� Δ�	� Δ�̅��*( = ���Δt�̅ up�uA� ��Δt�̅ up�u@� + ��Δt̅� up�u@� ��Δt�̅ up�uA��( .                                  
21
 

Based on the definitions (12) and (20), one writes    U ̅ + k̅�Δ#$� = U∗̅                                                                                                                                                                    
22
 

resulting in the nonlinear system 

   }�lU,̅ Δt�̅, Δt̅�m = U̅ + k̅�Δ#$� − U∗̅ =
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In order to make (23) solvable, the two following equations ��p� = 0 and ��p� = 0 are added: 
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Once assumed values for ��, the above non-linear system of equations can be solved numerically by the Newton-

Raphson method. The converged solution obtained for the provisional values of �� must satisfy the following 

constrains to be consistent with the elastic perfectly plastic constitutive model: (i) if �� = �� = 1 then ∆t� ≥ 0 

and ∆t� ≥ 0; (ii) if �� = 1 and �� = 0 then ∆t� ≥ 0 and p�
@�, A�
 ≤ 0; (iii) if �� = 0 and �� = 1 then p�
@�, A�
 ≤ 0 and ∆t� ≥ 0; (iv) �� = �� = 0 then p�
@�, A�
 ≤ 0 and p�
@�, A�
 ≤ 0. Notice that there are 

only four different combinations for the constants ��. If these constraints are not satisfied, a new prevision must 

be made for the constants ��, and the local problem (24) must be solved again for the new constants. 

3  Numerical results 

The effectiveness of the proposed co-rotational finite element was verified by two examples. The examples 

are both a beam clamped at both ends and subjected to a concentrated load, as illustrated in Figure 1. The 

validation was performed by comparing the developed finite element formulation presented in this paper and 

programed in FORTRAN language with available results of reference solutions from others similar finite 

element formulations. The examples were evaluated with 2 elements. The tolerance for the convergence of the 

global and local Newton-Raphson procedures was set 10��. 
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Figure 2: Clamped beam with a centered load 

3.1 Clamped beam with a centered load 

The first example was analyzed by Argyris et al. [16] with a distributed plasticity model. The authors used 

50 finites elements and adopted � = 500 cm, � = � = �/2, a rectangular cross-section of 20 cm x 40 cm and an 

elastic perfectly plastic material with Young modulus K = 20 GPa and yield stress �G = 100 MPa. A 

concentrated load � = 2000 kN was applied in 100 steps. The load displacement results at the point of 

application of the load are shown in Figure 1. 2. The transitions between elastic and elastoplastic behavior 

obtained by the distributed plasticity model by Argyris is smother than the plastic hinge model presented in this 

work. The differences in the elastoplastic part of the load displacement curve may be due to adopted yield 

functions. 

3.2 Clamped beam with an asymmetrical load 

The second example was analyzed by Alhasawi et al. [17] with an elastic perfectly plastic hinges model. 

The authors used 2 finite elements with plastic hinges at its ends and adopted � = 720 cm, � = �/3 and � = 2�/3. The beam cross-section is of type HEB 220, with a plastic modulus of �� = 827.19 cm�. The elastic 

perfectly plastic material has a Young modulus K = 210 GPa and a yield stress �G = 355 MPa. It is worth to 

emphasize that the authors adopted the yield functions defined in (21). A concentrated load � = 1200 kN was 

applied in 100 steps. The load displacement results at the point of application of the load are shown in Fig. 3. 

Notice that both elastic and elastoplastic load-displacement responses are very similar, which is expected since 

both works deals with elastic perfectly plastic hinges with the same yield functions. Even though there are some 

differences in the formulation presented in Alhasawi et al. [17] and the one presented in this work, they seem to 

give the same initial elastic and final elastoplastic tangent stiffness. 

4  Conclusions 

In this paper, a co-rotational model with elastic perfectly plastic hinges was developed to analyze planar 

frames considering lumped plasticity effects. The hinges effects were introduced into the generalized strain fields 

as Dirac deltas centered at the element ends, which naturally results in the formulation of the element. Both the 

plastic constrained nonlinear system of equation of the local problems and the global equilibrium nonlinear 

equations are solved by a full Newton-Raphson procedure. Two bi-clamped beam examples with a concentrated 

load were presented to validate the developed formulation. The results were consistent with the expected, as 

discussed in the numerical results section. 
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Figure 3: Clamped beam with an asymmetrical load 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either 

the property (and authorship) of the authors or has the permission of the owners to be included here. 

References 

[1] C. C. Rankin and B. Nour-Omid, “The use of projectors to improve finite element performance”. Computer and 

Structures, vol. 30, pp. 257–267, 1988. 

[2] B. Nour-Omid and C.C. Rankin, “Finite rotation analysis and consistent linearization using projectors”. Computer 

Methods in Applied Mechanics and Engineering, vol. 93, pp. 353–384, 1991. 

[3] J. -M. Battini and C. Pacoste, “Co-rotational beam elements with warping effects in instability problems”. Computer 

Methods in Applied Mechanics and Engineering, vol. 191, pp. 1755–1789, 2002. 

[4] J. -M. Battini and C. Pacoste, “Plastic instability of beam structures using co-rotational elements”. Computer Methods in 

Applied Mechanics and Engineering, vol. 191, pp. 5811–31, 2002. 

[5] M. A. Crisfield, Non-linear finite element analysis of solids and structures: Essentials. Wiley, 1997. 

[6] L. H. Teh and M. J. Clarke, “Plastic-zone analysis of 3D steel frames using beam elements”. Journal of Structural 

Engineering, vol. 125, pp. 1328–1337, 1999. 

[7] B. N. Alemdar and D. W. Donald, “Displacement, flexibility, and mixed beam–column finite element formulations for 

distributed plasticity analysis”. Journal of Structural Engineering, vol. 131, pp. 1811–1819, 2005. 

[8] A. H. Zubydan, “A simplified model for inelastic second order analysis of planar frames”. Engineering Structures, vol. 

32, pp. 3258–3268, 2010. 

[9] J. G. Orbison, W. McGuire and J. F. Abel, “Yield surface applications in nonlinear steel frame analysis”. Computer 

Methods in Applied Mechanics and Engineering, vol. 33, pp. 557–573, 1982. 

[10] E. M. Lui and W-F. Chen, “Analysis and behaviour of flexibly-jointed frames”. Engineering Structures, vol. 8, pp. 107–

118, 1986. 

[11] J. Y. R. Liew, H. Chen and N. E. Shanmugam and W. F. Chen, “Improved nonlinear plastic hinge analysis of space 

frame structures”. Engineering Structures, vol. 22, pp. 1324–1338, 2000. 

[12] C. Ngo-Huu, P. -C. Nguyen and S. -E. Kim, “Second-order plastic-hinge analysis of space semi-rigid steel frames”. 

Thin-Walled Structures, vol. 60, pp. 98–104, 2012. 

[13] F. A. C. Monteiro, Uma formulação co-rotacional geral. Aplicação a pórticos espaciais. MSc thesis, Instituto 

Tecnológico de Aeronáutica, 2004. 

[14] J. G. S. A. Meireles. Formulação corrotacional consistente para pórticos planos. Graduate thesis, Instituto Tecnológico 

de Aeronáutica, 2016. 

[15] G. H. Powell, M. Asce and P. F. Chen, “3D Beam-Column element with generalized plastic hinges”. Computer Methods 

in Applied Mechanics and Engineering, vol. 35, pp. 221–248, 1982. 

[16] J. H. Argyris, B. Boni, U. Hindenlang and K. Kleiver, “Finite element analysis of two- and three-dimensional 

elastoplastic frames. The natural approach”. Journal of Engineering Mechanics, vol. 112, pp. 627–641, 1986. 

[17] A. Alhasawi, P. Heng, M. Hjiaj, S. Guezouli and J.-M. Battini, “Co-rotational planar beam element with generalized 

elasto-plastic hinges”. Engineering Structures, vol. 151, pp. 188–205, 2017. 


