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Av. Trabalhador Sãocarlense, 400, Cx. P. 359, 13560-590, São Carlos - SP - Brazil
aguiarar@sc.usp.br, lucas.almeida.rocha@usp.br

Abstract. We consider the equilibrium of a cylindrically orthotropic disk subject to a prescribed displacement on
its boundary. In the context of classical linear elasticity, this problem has a solution that predicts material inter-
penetration. To prevent this unphysical behavior, we minimize the energy functional of classical linear elasticity
subject to the local injectivity constraint. In previous work, we have obtained computational results showing that
this problem has a rotationally symmetric solution that bifurcates from a radially symmetric solution. This sec-
ondary solution differs from a secondary solution reported in the literature, which was obtained by making no
assumptions about the symmetry of the solution. Here, we extend the investigation of our previous work by mak-
ing no a priori assumption on the symmetry of the displacement field. Using two different formulations, we obtain
sequences of numerical solutions that converge to the rotationally symmetric solution mentioned above as the mesh
is refined. In addition, there is no evidence of the existence of a third solution, which indicates that the rotationally
symmetric solution is the only possible secondary solution. This research is of interest in the investigation of solids
with radial microstructure, such as carbon fibers and certain types of wood.
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1 Introduction

Some problems in the classical linear elasticity have solutions that predict the existence of regions where the
material intersects itself. Of course, material interpenetration is not physically admissible. Locally, it is represented
by non-positive values of the determinant of the deformation gradient. A possible way to prevent this behavior is
to impose the local injectivity constraint, that is, the positiveness of the determinant of the deformation gradient.

In this work, we consider the equilibrium problem without body forces of a cylindrically orthotropic disk
subject to a prescribed displacement on its boundary. In the context of the classical linear elasticity, Lekhnitskii [1]
has obtained a closed form solution and shown that the radial and tangential stresses are singular at the center of the
disk when the elastic modulus in the radial direction is greater than the elastic modulus in the tangential direction.
Material properties of this type are found in carbon fibers with radial microstructure and certain types of wood;
see, for instance, the works of Christensen [2] and Forest Products Laboratory [3]. For this class of materials,
Fosdick and Royer-Carfagni [4] have shown that, in addition to singular stresses, the solution of the classical
linear elasticity also predicts material interpenetration. To prevent this behavior, the authors have proposed a
constrained minimization theory, in the context of which we minimize the energy functional of the classical linear
elasticity subject to the local injectivity constraint. The authors have obtained a closed-form solution that does not
predict material overlapping and is radially symmetric, in the sense that the displacement field has only the radial
component and depends only on the radius.

The local injectivity constraint is nonlinear and, in general, the corresponding constrained minimization prob-
lem requires a numerical solution. Aguiar [5] has proposed a numerical procedure based on an interior penalty
formulation and standard nonlinear programming techniques to solve a similar constrained minimization problem.
Fosdick et al. [6] have used the numerical procedure of Aguiar [5] to obtain a secondary solution for the disk
problem in the context of the constrained minimization theory. The authors have searched for a two-dimensional
displacement field making no assumptions of symmetry.
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Recently, Aguiar and Rocha [7] have revisited the constrained disk problem and searched for a solution
that is rotationally symmetric, in the sense that the radial and tangential components depend only on the radius.
The authors have obtained numerical results that converge to a solution that is different from the solution of
Fosdick et al. [6]. In particular, in the rotationally symmetric solution, the tangential displacement is linear in a
neighborhood of the center of the disk. In addition, to obtain the rotationally symmetric solution, the authors have
had to introduce a perturbation in the initial guess used in the numerical procedure for, otherwise, only the radially
symmetric solution was obtained.

In this work we search for a solution of the constrained disk problem making no assumptions about its
symmetry. We use two different formulations, namely the polar and the Cartesian formulations. The former
represents all fields in terms of the polar coordinates and is a natural extension of the formulation used by Aguiar
and Rocha [7]. The latter represents all fields in terms of the Cartesian coordinates. The Cartesian formulation
is similar to the formulation used by Fosdick et al. [6] and is included here for comparison purposes. Using both
formulations, we obtain convergent sequences of numerical solutions that converge to the rotationally symmetric
solution of Aguiar and Rocha [7]. These results indicate that the rotationally symmetric solution is the only possible
secondary solution of the constrained disk problem.

In Section 2, we present the constrained disk problem together with its polar and Cartesian formulations. We
then review the numerical procedure of Aguiar [5] that is used to obtain the numerical solutions for the corre-
sponding constrained minimization problems. In Section 3, we present the numerical results, which indicate that
the numerical solutions tend to the rotationally symmetric solution of Aguiar and Rocha [7] as the meshes used in
the finite element approximations are refined. In Section 4, we present some concluding remarks.

2 The disk problem

Let B ⊂ R2 be the undistorted natural reference configuration of a solid. Points X ∈ B are mapped to points
x := f(X) = X + u(X), x ∈ R2, where u(X) is the displacement of X. The boundary ∂B of B is composed of
two non-intersecting parts, ∂1B and ∂2B, ∂B = ∂1B∪∂2B, ∂1B∩∂2B = ∅, such that u(X) = ū(X) for X ∈ ∂1B,
where ū is a known vector-valued function, and a dead load traction field t̄(X) is prescribed for X ∈ ∂2B. In
addition, a body force b(X) per unit of volume acts on X ∈ B.

We consider the problem of minimization of the total potential energy of classical linear elasticity, given by

min
u∈Aε

E [u] , E [u] =
1

2

∫
B
C[E] ·E dX−

∫
B

b · u dX−
∫
∂2B

t̄ · u dX , (1)

where
Aε :=

{
u ∈ W1,2(B)→ R2 | det(1 +∇u) ≥ ε > 0, u = ū on ∂1B

}
(2)

is the set of kinematically admissible displacements with ε being a sufficiently small positive parameter. Further-
more, E is the infinitesimal strain tensor and C is the elasticity tensor, which is symmetric and positive definite.
If the injectivity constraint det(1 +∇u) ≥ ε > 0 were not present, the constrained minimization problem stated
above would become the minimization problem of classical linear elasticity theory.

Let B = B> ∪ B=, B> ∩ B= = ∅, where

B> := int[{X ∈ B | det∇f(X) > ε}] , B= := int[{X ∈ B | det∇f(X) = ε}] , (3)

and int[·] denotes the interior of a set. Fosdick and Royer-Carfagni [4] have shown that the Euler-Lagrange equa-
tions for the constrained minimization problem defined by eq. (1) and eq. (2) are given by

Div T + b = 0 in B> , Div (T− ελ(∇f)−T ) + b = 0 in B= , (4)

where λ(X) ≥ 0 is the Lagrange multiplier field associated with the injectivity constraint det(1 +∇u) ≥ ε > 0
and T = C[E] is the stress tensor. The boundary conditions are given by

T n = t̄ in ∂2B> , (T− ελ(∇f)−T ) n = t̄ in ∂2B= , (5)

where n is a unit normal to ∂2B. In addition, the jump condition

(T− ελ(∇f)−T )|Σ∩B̄=
n = T|Σ∩B̄>

n (6)

must hold across Σ := B̄> ∩ B̄=, where n is a unit normal to Σ and where Σ ∩ B̄= and Σ ∩ B̄> mean that the
evaluations are understood as limits to the dividing interface Σ from within B= and B>, respectively.
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In the interior penalty formulation of Aguiar [5], we replace the energy functional of eq. (1.b) by a penalized
potential energy functional Eδ : Aε → R defined by

Eδ[u] := E [u] + P[u] / δ , (7)

where δ > 0 is a penalty parameter and P[u] : Aε → R is a barrier functional, which must satisfy P[u] > 0,∀u ∈
Aε, and P[u]→∞ as u approaches the boundary ofAε. The addition of the term P/δ establishes a barrier on the
boundary of the constraint set Aε that prevents the minimizing procedure from leaving the set Aε. We then solve
a sequence of minimization problems of the form

min
u∈Aε

Eδ[u] (8)

for increasingly larger values of δ. In the limit as δ → ∞, the solution of the penalized minimization problem
given by eq. (8) tends to the solution of the original minimization problem given by eq. (1). We use the same
barrier functional P[u] used by Aguiar [5] and Fosdick et al. [6], which is given by

P[u] :=

∫
B

[det(1 +∇u)− ε]−1
dX , ∀u ∈ Aε . (9)

In this work, we consider that B is a circular disk of radius Re with its center at the origin of the coordinate
system. There is no body force, b = 0, and the disk is subject to a prescribed radial displacement ū = ūr er on
its entire boundary, that is, ∂B = ∂1B and ∂2B = ∅. We express the energy and barrier functionals, given by eq.
(1.b) and eq. (9), respectively, with both a polar coordinate system (R,Θ) with the associated orthonormal basis
{er, eθ} and a Cartesian coordinate system (X1, X2) with the associated orthonormal basis {e1, e2}. The former
takes advantage of the geometry of the disk, the radial application of the load, and the material properties. The
latter is included for comparison purposes with the work of Fosdick et al. [6]. In addition, we assume that the disk
is composed of a cylindrically orthotropic material, in the sense that the components of C are constant relative to
the basis {er, eθ}.

We make no assumptions about the symmetry of the displacement field. Thus, relative to the basis {er, eθ},
it has the form

u(R,Θ) = ur(R,Θ) er + uθ(R,Θ) eθ . (10)

From the Generalized Hooke’s Law, T = C[E], the components of the stress and strain tensors in, respectively,

T = σrr er ⊗ er + σθθ eθ ⊗ eθ + σrθ (er ⊗ eθ + eθ ⊗ er) , (11)

E = εrr er ⊗ er + εθθ eθ ⊗ eθ + εrθ (er ⊗ eθ + eθ ⊗ er) (12)

are related to each other by

σrr = c11 εrr + c12 εθθ , σθθ = c12 εrr + c22 εθθ , σrθ = 2 c66 εrθ , (13)

where the constants c11, c22, c12, c66 are the components of C relative to the basis {er, eθ} and

εrr = ur,R , εθθ =
ur
R

+
uθ,Θ
R

, εrθ =
1

2

(ur,Θ
R

+ uθ,R −
uθ
R

)
, (14)

with (·),A denoting the partial derivative ∂(·)/∂A.
It follows from eq. (10)-(14) that the energy functional E , given by eq. (1.b), and the barrier functional P ,

given by eq. (9), can be written as, respectively,

E [u] =

∫ 2π

0

∫ Re

0

(
c11Ru

2
r,R

2
+ c12 ur ur,R + c12 ur,R uθ,Θ +

c22 u
2
r

2R
+
c22 ur uθ,Θ

R
+
c22 u

2
θ,Θ

2R
+

c66Ru
2
θ,R

2
− c66 uθ uθ,R + c66 ur,Θ uθ,R +

c66 u
2
θ

2R
− c66 uθ ur,Θ

R
+
c66 u

2
r,Θ

2R

)
dRdΘ ,

(15)

P[u] =

∫ 2π

0

∫ Re

0

RdRdΘ

(1 + ur,R) (1 + ur/R+ uθ,Θ/R)− uθ,R (ur,Θ/R− uθ/R)− ε
. (16)

The constrained minimization problem given by eq. (8) together with eq. (7), eq. (15) and eq. (16) is referred to
as the polar formulation.

To obtain the Cartesian formulation, we first note that the elasticity tensor C is not constant relative to the
basis {e1, e2}. In fact, its components are given by
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ccijkl(X) = QmiQnj QokQpl cmnop , (17)

with i, j, k, l = 1, 2 and implicit sum from 1 to 2 over the repeated indices. In eq. (17), we use the rules 11 → 1,
22 → 2, and 12 → 6 to see that cmnop represent the constants c11, c12, c22, and c66 of eq. (13). In addition, Qij
are the components of the transformation matrix

Q = [Qij ] =

 cos Θ sin Θ

− sin Θ cos Θ

 , (18)

where Θ is the polar angle of the material point X = Xi ei and is given by Θ = arctan(X2/X1). In addition, the
displacement field has the form

u(X) = u1(X1, X2) e1 + u2(X1, X2) e2 . (19)

Similar to the steps that lead to eq. (15) and eq. (16), we obtain that the energy functional E , given by eq.
(1.b), and the barrier functional P , given by eq. (9), can be written as, respectively,

E [u] =

∫
B

(
cc11 u

2
1,1

2
+ cc12 u1,1 u2,2 + cc16 u1,1 u1,2 + cc16 u1,1 u2,1 +

cc22 u
2
2,2

2

+ cc26 u1,2 u2,2 + cc26 u2,1 u2,2 + cc66

u2
1,2

2
+ cc66 u1,2 u2,1 +

cc66 u
2
2,1

2

)
dX ,

(20)

P[u] =

∫
B

1

(1 + u1,1)(1 + u2,2)− u1,2 u2,1 − ε
dX , (21)

where, again, we use the rules 11 → 1, 22 → 2, and 12 → 6 to represent the elastic constants, and we omit their
dependence on X. The constrained minimization problem given by eq. (8) together with eq. (7), eq. (20) and eq.
(21) is referred to as the Cartesian formulation.

Next, we present the discrete versions of the polar and Cartesian formulations. Let Vh be a finite element
space spanned by a set of vector-valued basis functions {wi}, where h stands for the characteristic length of the
finite element. A finite element approximation uh ∈ Vh for the penalized minimization problem, given by eq. (8),
can be written as

uh =

m∑
i=1

si wi , (22)

where si ∈ R, i = 1, 2, ...,m, is a degree of freedom and m is the number of degrees of freedom associated
with the discretization. We introduce the vector of degrees of freedom s := (s1, s2, ..., sm) and the functions
Eh(s) := E [uh] and Ph(s) := P[uh]. Then, the discrete version of the penalized functional of eq. (7) is given by

Fδ(s) := Eh(s) + Ph(s) / δ (23)

and the associated minimization problem is given by

min
s∈Rm

Fδ(s) (24)

subject to det(1 +∇u) ≥ ε > 0 in parts of the domain where uh is smooth.
We solve the minimization problem given by eq. (24) iteratively using the numerical procedure proposed

by Aguiar [5], which is based on the Newton-Raphson method together with a line search. In summary, we start
from an initial guess s0 and a penalty parameter δ. We generate a sequence of vectors sk, k = 1, 2, 3, ..., which
converges to a solution sδh of the discrete minimization problem given by eq. (24). Then, we increase δ and repeat
the previous procedure starting from s0 = sδh. As δ → ∞, the sequence of solutions {sδh} converges to a vector
sh = (s1, s2, ..., sm) that yields the approximate solution uh ∈ Vh, given by eq. (22). By letting h → 0, we
generate a sequence of approximations {uh} which converges to the minimizer of the original problem given by
eq. (1).

3 Numerical results

In this section we apply the numerical procedure of Aguiar [5] with the formulation presented in Section 2 to
obtain numerical solutions of the constrained disk problem. For comparison purposes, we use the same material
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and geometric parameters used by Fosdick et al. [6] and Aguiar and Rocha [7], which are given, in dimensionless
units, by ūr := ū · er = −0.05, c11 = 105, c22 = 104, c12 = 103, c66 = 103, ε = 0.1, and Re = 1. In addition,
the numerical results presented below correspond to δ = 108; we have verified that the results do not change
significantly for larger values of δ.

In the polar formulation, we use isoparametric bilinear finite elements defined on the domain (0, Re)×(0, 2π)
to construct the approximations uh in eq. (22). We construct the mesh by dividing the interval (0, Re) in 600 q,
q ∈ {1, 4, 16}, subintervals as follows: 375 q elements in (0, 0.07Re), 125 q elements in (0.07Re, 0.46Re), and
100 q elements in (0.46Re, Re). The interval (0, 2π) is divided uniformly in 64 subintervals. Therefore, the
rectangular domain (0, Re)× (0, 2π) is the union of 600 q × 64 rectangles.

In the Cartesian formulation, we also use isoparametric bilinear finite elements. However, in this case, they
are defined in a discrete domain Bh, which approximates the circular domain B. The discrete domain Bh is
composed of N = 2128, 7162, or, 22448 quadrilateral elements with its boundary being discretized by 64, 128, or,
256 segments of straight lines, respectively. In addition, in all three cases, the characteristic size of the elements at
the center of Bh is 10−4.

In the polar formulation, the components of s = (s1, s2, ..., sm), with m = 2M and M being the number
of mesh nodes, are given by s2 i−1 := uh(Ri,Θi) · er and s2 i := uh(Ri,Θi) · eθ, where i = 1, 2, ...,M and
(Ri,Θi) are the polar coordinates of the i-th mesh node. To obtain a numerical solution that is different from the
radially symmetric solution, we consider that the components with odd indices of the initial guess s0 are given by
s2 i−1

0 = ūr Ri/Re for i = 1, 2, ...,M , and the components with even indices by s2 i
0 = u0

θ for 1 < i < M , where
u0
θ is a small perturbation, and s2

0 = s2M
0 = 0. Here, we use u0

θ = 10−2. Different values of u0
θ do not affect

much the numerical results, except if they are too small, in which case the numerical procedure converges only to
the radially symmetric solution. The necessity of a large enough perturbation in the tangential displacement was
also observed by Aguiar and Rocha [7].

In the Cartesian formulation, the components of s = (s1, s2, ..., sm) are given by s2 i−1 := uh(Xi
1, X

i
2) · e1

and s2 i := uh(Xi
1, X

i
2) · e2, where i = 1, 2, ...,M and (Xi

1, X
i
2) are the Cartesian coordinates of the i-th mesh

node. In this case, we use the solution of the isotropic disk problem, given by u = (R/Re) ū, as the initial guess
for the numerical procedure. There is no need to perturb the tangential displacement, because, for the considered
meshes, the error introduced by the approximation of the circular boundary of the disk with straight line segments
acts as a perturbation.

In Fig. 1, we show the radial displacement ur versus the radius R. The solid lines represent ur obtained with
the polar formulation for q = 1, 4, 16, and the dashed line represents ur of the rotationally symmetric solution
from Aguiar and Rocha [7]. Fig. 1a refers to the entire interval (0, Re) and Fig. 1b refers to a neighborhood of the
origin given by the interval (0, 0.05). We see from both figures that the curves are very close to each other.

 

(a) Entire interval
 

(b) Neighborhood of the origin

Polar formulation using q = 1, 4, 16 Rotationally symmetric solution

Figure 1. Radial displacement ur versus the radius R. Polar formulation and rotationally symmetric solution of
Aguiar and Rocha [7].

In Fig. 2, we show the tangential displacement uθ versus the radius R. Similarly to Fig. 1, the solid
lines represent uθ obtained with the polar formulation for q = 1, 4, 16, and the dashed line represents uθ of the
rotationally symmetric solution from Aguiar and Rocha [7]. Again, the results are presented forR ∈ (0, Re) in Fig
2a and for (0, 0.05) in Fig. 2b. We see from Fig. 2a that the curves are indistinguishable and, from Fig. 2b, that
uθ of the polar formulation tends to uθ of the rotationally symmetric solution. In particular, uθ tends to a linear
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function in a neighborhood of the origin.

 

θ

(a) Entire interval
 

θ

(b) Neighborhood of the origin

Polar formulation using q = 1, 4, 16 Rotationally symmetric solution

Figure 2. Tangential displacement uθ versus the radius R. Polar formulation and rotationally symmetric solution
of Aguiar and Rocha [7].

Next, to present the results of the Cartesian formulation, we consider X2 = 0, which corresponds to Θ = 0,
and plot graphs of ur(R) and uθ(R), where, here, R = X1 ∈ (0, Re), ur(R) = u1(X1, 0), and uθ(R) =
u2(X1, 0). These graphs are shown in Fig. 3 and Fig 4, which correspond to, respectively, Fig. 1 and Fig. 2
obtained with the polar formulation. We see from Fig. 3 and Fig. 4 that, again, both ur and uθ of the Cartesian
formulation tend to ur and uθ of the rotationally symmetric solution, respectively, as the mesh is refined.

 

r

(a) Entire interval
 

r

(b) Neighborhood of the origin

Cartesian formulation using N = 2128, 7162, 22448 Rotationally symmetric solution

Figure 3. Radial displacement ur versus the radius R. Cartesian formulation and rotationally symmetric solution
of Aguiar and Rocha [7].

In summary, by using both polar and Cartesian formulations, the numerical approximations converge to the
rotationally symmetric solution of Aguiar and Rocha [7] and do not seem to depend on the polar angle Θ. In
addition, there is no evidence of the existence of a third solution, which could, for instance, depend on Θ.

4 Conclusions

We have considered the problem of a cylindrically orthotropic disk in equilibrium with no body forces and
subjected to a prescribed displacement on its boundary. We have searched for two-dimensional displacement
fields, making no assumptions about their symmetries, in the context of a constrained minimization theory of
elasticity that enforces the local injectivity constraint. We have formulated the problem in two different ways,
which correspond to the polar and the Cartesian formulations. Below, we list the main results of this work.
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θ

(a) Entire interval
 

θ

(b) Neighborhood of the origin

Cartesian formulation using N = 2128, 7162, 22448 Rotationally symmetric solution

Figure 4. Tangential displacement uθ versus the radius R. Cartesian formulation and rotationally symmetric
solution of Aguiar and Rocha [7].

• Using the polar and the Cartesian formulations, we have obtained sequences of numerical results that con-
verge to the rotationally symmetric solution reported by Aguiar and Rocha [7], which was obtained by
assuming that the displacement field depends only on the radius. In particular, near the center of the disk,
the tangential displacement is a linear function of the radius.

• In the polar formulation, to obtain a secondary solution that is different from the radially symmetric solution,
we must perturb the tangential displacement of the initial guess used in the numerical procedure. In the
Cartesian formulation, for the considered meshes, such an explicit perturbation is not required, because the
error introduced by the approximation of the circular boundary with segments of straight lines introduces a
perturbation in the tangential displacement.

• We have obtained no evidence of the existence of a third solution, which indicates that the rotationally
symmetric solution of Aguiar and Rocha [7] is the only possible secondary solution for the orthotropic disk
problem considered in this work.
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