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Abstract. The Kirchhoff and Reissner-Mindlin plate theories are the most frequently used models for describing 

the behavior of linearly elastic plates. In what concern the limit analysis of plates based on the static theorem, the 

most significant difference between those theories lies in the fact that for a Reissner-Mindlin plate the transverse 

shear resistance is included in the yield criterion. It is numerically shown that the Kirchhoff plate theory 

increasingly overpredicts the collapse load of plates with decreasing side-to-thickness ratio. For this reason alone, 

the Reissner-Mindlin plate theory should be used in the limit analysis of relatively thick plates. On the other hand, 

transverse shear locking and boundary layer have been major sources of convergence delay of Reissner-Mindlin 

plate models, especially towards thin plate solutions. While the former is a well investigated finite element defect, 

the latter is a real physical phenomenon likely to be manifested in more refined theories, such as the Reissner-

Mindlin plate theory, that nearly no attention has been paid in the framework of yield design. In this sense, it is 

used in the present work a recently developed shear locking-free finite element for the yield design of Reissner-

Mindlin plates based on the static theorem to illustrate boundary layers along certain types of plate edges, which 

may not be of the same type as those in linear elastic solutions. Finally, a brief state-of-the-art review about limit 

analysis of Reissner-Mindlin plates is then provided. 
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1  Introduction 

The Kirchhoff and Reissner-Mindlin plate theories are the most frequently used models for describing the 

behavior of linearly elastic plates [1]. The latter theory was originally proposed to cope with first-order transverse 

shear effects. In what concern the limit analysis of Kirchhoff and Reissner-Mindlin plates based on the static 

theorem, the most significant difference between those theories lies in the fact that for a Reissner-Mindlin plate 

the transverse shear resistance is included in the yield criterion. As it will be seen in the numerical tests, the 

Kirchhoff plate theory increasingly overpredicts the collapse load of plates with decreasing side-to-thickness ratio. 

For this reason alone, the Reissner-Mindlin plate theory should be used in the limit analysis of relatively thick 

plates. On the other hand, transverse shear locking has been the fundamental obstacle to the design of effective 

plate elements based on the Reissner-Mindlin theory [2]. Depending on the numerical treatment of a Reissner-

Mindlin plate model, such a locking defect occurs making the convergence slower as the plate thickness becomes 

smaller. Bleyer and de Buhan [3] show that no transverse shear locking, that is, no deterioration of the solution, 

with respect to a reducing thickness, occurs when using equilibrium finite elements in the framework of limit 
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analysis. The pseudo-equilibrium element for the limit analysis of Reissner-Mindlin plates proposed by Cavalcante 

and Lucena Neto [4] is also not plagued by transverse shear locking. Another major source of convergence delay 

that appears in more refined theories, such as the Reissner-Mindlin plate theory, is the real physical phenomenon 

of boundary layer, which this paper focus on and that probably finds in [3, 4] the only references to mention it in 

the framework of limit analysis. 

Most of the research in the limit analysis of plates has been devoted to Kirchhoff plates, just to mention a 

few, and, many of them have been carried out with computer aided methods [5-16]. The coupling of the static and 

kinematic theorems of limit analysis with finite element method gives rise to large-scale constrained optimization 

problems which can be solved by means of mathematical programming algorithms. The usefulness of this very 

powerful procedure was limited initially by the lack of robustness of the algorithms that were available for solving 

large-scale mathematical programming problems and by the low computational capability. The substantial advance 

in algorithms for nonlinear convex optimization [17-22] has played a key part in the recent progress of limit 

analysis applied to plate bending problems [3, 4, 23-33]. 

There are little works devoted to the limit analysis of Reissner-Mindlin plates [3, 4, 23, 24, 28, 30-32] and 

only the works of [3, 4] address the static approach to limit analysis. Both finite element formulations in [3, 4] do 

not lead to strict lower bounds. The three-node triangular element developed in [4] belongs to a class of mixed 

finite elements [9, 33-35], nowhere violates the adopted von Mises yield criterion, and naturally converges to the 

Kirchhoff plate theory as the thickness becomes smaller. The element also detects boundary layer along certain 

types of plate edges, which is numerically shown to be a source of convergence delay and that may not be of the 

same type as those in the linear elastic solutions [36-39]. 

The resulting nonlinear convex optimization problem posed by the static theorem is treated as second-order 

cone programming and solved with a primal-dual interior-point algorithm [20] implemented in the MOSEK 

optimization package [40]. This paper makes use of this numerical procedure to show the presence of boundary 

layer in yield design (limit analysis) of Reissner-Mindlin plates. 

2  Illustrative results 

Predictions of collapse load are carried out for square plates assuming that 𝜎0 = 250 MPa and the 

computational procedure outlined in the last paragraph above. The computations are performed on a personal 

laptop computer (Intel Core i7-9750H CPU and 64 GB of RAM) running a 64-bit Windows 10. 

Simply supported square plates of side length 𝐿 = 1 m and thickness ℎ are analyzed under uniformly 

distributed load 𝑞. As two kinds of simple and clamped supports must be distinguished in Reissner-Mindlin models 

[39], one kind of which named “hard” and the other “soft”, the results to follow will take this distinction into 

account. 

Due to symmetry consideration, only the bottom-left quarter of the plate is defined as the solution domain, 

as shown in Figure 1 modeled by the 4 × 4 mesh. The mechanical boundary conditions for the solution domain of 

a hard simply supported plate are 

 𝑀𝑛 = 0                            hard 

  𝑀𝑛 = 0       𝑀𝑛𝑠 = 0       soft  
}         on the left and bottom edges                                              

𝑀𝑛𝑠 = 0         𝑄𝑛 = 0                            on the right and top edges                                           (1) 

where 𝑀𝑛, 𝑀𝑛𝑠 and 𝑄𝑛 refer, respectively, to the bending moment, twisting moment and transverse shear force 

acting on the edges (𝑛 and 𝑠 allude to the normal and tangential edge directions). According to the weak form (13) 

in Cavalcante and Lucena Neto [4], the weight function components 𝜙𝑛, 𝜙𝑠 or 𝑤 are made null on the edges for 

which 𝑀𝑛, 𝑀𝑛𝑠 or 𝑄𝑛 are unknown, respectively. For instance, on the right and top edges one must impose 𝜙𝑛 =  0. 

For clamped plates, conditions (1) must be changed only on the left and bottom edges so that no mechanical 

boundary conditions are imposed on a hard edge while just 𝑀𝑛𝑠 = 0 takes place on a soft one. 

The effect of the ratio 𝐿 ℎ⁄  on the collapse load of hard or soft simply supported or clamped square plates is 

summarized in Figure 2 using the 128 × 128 mesh. No exact solution  is  available  for  any  value  of  𝐿 ℎ⁄ .  The  
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Figure 1.   Square plate with solution domain modeled by the 4 × 4 mesh. 

 

Figure 2.   Variation of the collapse load predictions with respect to the ratio 𝐿 ℎ⁄  for hard and soft square plates 

modeled by the 128 × 128 mesh: (a) simply supported (𝑞UB = 25.024 𝑀0 𝐿2⁄ ); (b) clamped 

(𝑞UB =  44.196 𝑀0 𝐿2⁄ ). 

collapse load predictions with the von Mises yield criterion (see equation (8) in [4]) are normalized by the best 

upper bound 𝑞UB found in the literature for each type of (hard) support and computed according to the Kirchhoff 

plate model [23, 29]. One can see that the results converge monotonically from below to 𝑞UB with increasing 𝐿 ℎ⁄  

and, thus, the Kirchhoff plate model increasingly overpredicts the collapse load of plates with decreasing side-to-

thickness ratio. The results for the hard simply supported condition exhibit a more pronounced convergence. 

Figure 2 also depicts the upper bounds found in [30] for the most refined uniform mesh using a Reissner-

Mindlin model. The predictions attained with the proposed element are systematically below those of [30], which  
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Figure 3.   Distribution of 𝑀𝑥𝑦 along 𝑦 = 0.25 at the collapse load of simply supported square plates modeled by 

the 128 × 128 mesh (SI units): (a) 𝐿 ℎ⁄ = 20; (b) 𝐿 ℎ⁄ = 100. 

 

Figure 4.   Distribution of 𝑄𝑦 along 𝑦 = 0.25 at the collapse load of clamped square plates modeled by the 

128 × 128 mesh (SI units): (a) 𝐿 ℎ⁄ = 20; (b) 𝐿 ℎ⁄ = 100. 
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Table 1. Limit loads computed with the von Mises infinite shear yield criterion. 

Mesh 
𝑞𝐿2 𝑀0⁄  

Soft Hard 

4 × 4 
   24.8532         24.9109 

     (−0.6587%)* (−0.4281%)* 

8 × 8 
   24.9550         24.9673 

     (−0.2518%) (−0.2027%) 

16 × 16 
   25.0014         25.0031 

     (−0.0664%) (−0.0596%) 

32 × 32 
   25.0144         25.0145 

     (−0.0144%) (−0.0140%) 

64 × 64 
   25.0174         25.0177 

     (−0.0024%) (−0.0012%) 

128 × 128 
   25.0173         25.0180 

     (−0.0028%)    (0.0000%) 

 Pseudo Kirchhoff LB [3]   25.018 

 Kirchhoff LB [26] 24.93 

 Kirchhoff UB [3]     25.033† 

                         *Δ% to the pseudo Kirchhoff LB [3] 

are based on a discrete shear gap formulation and combined with a stabilizing smoothing technique in order to 

avoid shear locking. 

It is evident from Figure 2a that the collapse load of a simply supported square plate converges to that of the 

Kirchhoff plate, as the thickness becomes smaller, faster when hard condition is used. If the square plate is 

clamped, Figure 2b shows that the change from the hard to the soft condition has little effect on the convergence. 

The distribution of the twisting moment 𝑀𝑥𝑦 in a simply supported square plate along 𝑦 = 0.25 m is depicted 

in Figure 3a for 𝐿/ℎ = 20 and Figure 3b for 𝐿/ℎ = 100. One can see from the plot that the change from hard to 

soft condition introduces a noticeable difference in 𝑀𝑥𝑦 only in a narrow zone close to the edge, with the values 

of the soft plate varying rapidly. It is then said that 𝑀𝑥𝑦, and also 𝑄𝑥 and 𝑄𝑦  (not shown here), has boundary layer 

(rapidly varying behavior) for the soft condition. While the narrow zone width decreases with the plate thickness, 

as in the linear elastic solution [36-39], the boundary layer intensity may or may not increase in the yield design. 

No boundary layer is detected for the bending moments 𝑀𝑥 and 𝑀𝑦, whose values are insensitive to the change 

from the hard to the soft condition. The presence of boundary layers in the soft simply supported plate may explain 

its slower convergence toward the Kirchhoff plate shown in Figure 2a. 

If the square plate is clamped, the change from the hard to the soft condition has little effect on the distribution 

of stress resultants. This may explain why the curves of Figure 2b are so close to each other. As illustrated in 

Figure 4, the shear force 𝑄𝑦 , and also 𝑄𝑥 (not shown here), has boundary layer with slightly higher intensity for 

the soft condition. Again, this may also explain the slow convergence shown in Figure 2b and why the curve of 

the soft plate is slightly below that of the hard plate. Unlike the yield design, the linear elastic solution does not 

detect any boundary layer close to straight soft clamped edges [38]. 

Additionally, according to Bleyer and de Buhan [3], the nondimensional collapse load 𝑞𝐿2 𝑀0⁄  for a thin 

plate (Kirchhoff model) is independent of the plate thickness ℎ and can be computed from a Reissner-Mindlin 

model by imposing the yield shear force 𝑄0 to be infinite (see equation (9) in [4]). For the simply supported 

condition, Table 1 condenses the soft and hard collapse predictions obtained with this von Mises infinite shear 

yield criterion (𝑄0 = ∞) for all six meshes. It also details the relative error to the best solution computed in [3] 

with the same yield criterion and hard simple supports. As expected, the results are independent of 𝐿 ℎ⁄  and this is 

verified by achieving the same values for ten different ratios (𝐿 ℎ⁄ = 1, 2, 4, 8, 10, 20, 40, 80, 100, 200). 

The best limit load obtained for the hard simply supported square plate (𝑞 𝐿2 𝑀0⁄ = 25.0180) coincides to 

the one computed by Bleyer and de Buhan [3]. The predictions for the soft and hard simply supported plates with 

all meshes are less than 1% of the reference hard value 𝑞 𝐿2 𝑀0⁄ = 25.018 and, except for the coarsest mesh, they 

are bracketed by the Kirchhoff lower and upper bounds found in Le et al. [26] and Bleyer and de Buhan [3], 

respectively. For the hard simply supported case, the results converge monotonically to 𝑞 𝐿2 𝑀0⁄ = 25.018. It is 

also evident from Table 1 that for each mesh the gap between the reference value 𝑞 𝐿2 𝑀0⁄ = 25.033 found in [3] 
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Figure 5.   Distribution of 𝑄𝑦 along 𝑦 = 0.25 at the collapse load of simply supported thin square plate modeled 

by the 128 × 128 mesh (SI units). 

and the soft load predictions is always greater than the gap obtained with hard boundary conditions. 

Again, the distribution of the shear force 𝑄𝑦  along 𝑦 = 0.25 m for a simply supported thin plate is shown in 

Figure 5, which has the same distribution as 𝑄𝑥 along 𝑥 = 0.25 m (not shown here). One can see from the plots 

that the change from the hard to the soft boundary condition introduces a noticeable difference in 𝑄𝑦  (and also 𝑄𝑥) 

only in a narrow zone close to the edge, with the values of the soft plate varying rapidly. No boundary layer is 

detected for the bending moments 𝑀𝑥 and 𝑀𝑦 and the twisting moment 𝑀𝑥𝑦, whose values are insensitive to the 

change from the hard to the soft condition. The presence of boundary layer in the soft simply supported thin plate 

may explain the larger gaps of the results in Table 1 to the Kirchhoff upper bound 𝑞 𝐿2 𝑀0⁄ = 25.033 found in 

[3]. The absence of boundary layer in any of the stress resultants for the hard simply supported boundary 

conditions, which describes more accurately the Kirchhoff model [3], agrees with linear elastic solutions [36-39]. 

Therefore, it can be argued that it is accurate the procedure of imposing hard boundary conditions and the yield 

shear force 𝑄0 to be infinite in a Reissner-Mindlin limit analysis model to simulate an equivalent Kirchhoff model, 

as suggested by Bleyer and de Buhan [3]. 

3  Conclusions 

The pseudo-equilibrium finite element developed in [4] for limit analysis of Reissner-Mindlin plates detects 

boundary layer along edges that may not be of the same type as those in the linear elastic solutions. As a real 

physical phenomenon likely to be manifested in more refined theories, such as the Reissner-Mindlin plate theory, 

boundary layer should be taken into account in the yield design by means of some adaptive refinement strategy 

because it is a source of convergence delay. 
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